
Profiling a Million User DHT

Jarret Falkner Michael Piatek John P. John Arvind Krishnamurthy Thomas Anderson
University of Washington

ABSTRACT
Distributed hash tables (DHTs) provide scalable, key-based
lookup of objects in dynamic network environments. Al-
though DHTs have been studied extensively from an an-
alytical perspective, only recently have wide deployments
enabled empirical examination. This paper reports mea-
surements of the Azureus BitTorrent client’s DHT, which is
in active use by more than 1 million nodes on a daily basis.
The Azureus DHT operates on untrusted, unreliable end-
hosts, offering a glimpse into the implementation challenges
associated with making structured overlays work in practice.
Our measurements provide characterizations of churn, over-
head, and performance in this environment. We leverage
these measurements to drive the design of a modified DHT
lookup algorithm that reduces median DHT lookup time by
an order of magnitude for a nominal increase in overhead.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems—Distributed applications

General Terms
Measurement, Performance

1. INTRODUCTION
Distributed hash tables provide scalable, key based lookup

of objects in dynamic network environments. As its name
implies, a DHT exports a hash table interface. Nodes can
insert {key, value} pairs and retrieve values for a provided
key. In support of this simple API, the underlying DHT
layer manages the details of scalable routing and coping with
dynamic membership.

As a distributed systems building primitive, DHTs have
proven remarkably versatile. Researchers have leveraged
scalable lookup to design distributed filesystems, content
distribution networks, location sensing systems, and rendezvous-
based communication infrastructures. These projects demon-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IMC’07, October 24-26, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-908-1/07/0010 ...$5.00.

strate the range of services that DHTs can support, but each
is predicated on the existence of a robust DHT substrate.

To date, researchers have lacked a comprehensive frame-
work for verifying the robustness of their DHT designs. Wide-
area testbeds such as PlanetLab provide realism in terms of
network conditions [2, 8], and simulators enable evaluation
of large-scale settings [3, 5], but neither approach provides
a complete picture of how a DHT would behave when op-
erated in the wild, i.e., the performance of a wide-area and
large-scale deployment under realistic workloads.

Recently, large-scale, wide-area DHT deployments have
emerged that enable measurements that can fill in this miss-
ing operational knowledge. DHTs are widely used by sev-
eral peer-to-peer filesharing networks with users numbering
in the millions, session times varying from minutes to days,
and connectivity ranging from a dialup modem to 100 Mb
fiber. This paper reports on profiling one of these networks,
the DHT underlying the Azureus BitTorrent client. Azureus
is the most widely used implementation of the popular Bit-
Torrent protocol [7], and our measurements indicate that its
DHT supports more than a million concurrent users. Using
instrumented clients at diverse vantage points, we gather de-
tailed traces of DHT activity that we both make available
to the community as well as analyze to obtain the following
results.

• As with many P2P systems, we find evidence that session
times are short on average, but heavy tailed.

• Despite short session times, lookups are robust, in part be-
cause long-lived nodes shoulder a relatively large amount
of routing traffic.

• The network’s view of the closest node for a given key
is partially inconsistent in both the short and long term,
motivating redundant storage and refresh. However, both
the number of replicas and the refresh rate are currently
more conservative than necessary for the observed Azureus
workload, contributing to high maintenance overhead.

• Although the core DHT operation of replica lookup de-
pends on many per-node properties, we identify per-message
response probability as a relatively stable global prop-
erty that distills many other workload aspects, including
churn, routing table freshness, and per-node resource lim-
its.

• Using aggregate response probability measurements, an
individual node can reduce lookup time by an order of
magnitude at the cost of a marginal increase in overhead.

2. BACKGROUND
We report on measurements of the Kademlia-based DHT

used by the Azureus BitTorrent client.1 There are three
pieces of relevant context: 1) the uses of Kademlia by Azureus,
2) the properties of the Kademlia DHT, and 3) the key
Kademlia parameters that influence measured data. We pro-
vide background on each of these in turn.

Azureus maintains a DHT to address a scalability bottle-
neck. The BitTorrent protocol defines the wire-level details
of distributing data in a swarm, an overlay mesh of ran-
domly connected end-hosts [1]. To join a swarm, a new
client first needs a list of peers already participating in the
distribution. Originally, this source of initial peers was pro-
vided by a centralized coordinator which dispensed a partial,
random list of current participants upon request. Although
data distribution in BitTorrent is decentralized, this central
coordinator was recognized as a scalability bottleneck that
also singlehandedly controlled availability; if the coordina-
tor was inoperable, new users could not be bootstrapped
into the mesh.

Azureus uses its DHT to provide a backup source of peers
should the centralized coordinator become unavailable. The
DHT also enables distribution without specifying any cen-
tral coordinator. In addition to contacting the coordinator,
a new Azureus user also performs a DHT get operation for
the swarm’s key, determined by hashing its metadata. This
get returns a set of Azureus peers. The new peer appends
itself to this list by performing a corresponding put oper-
ation, which is refreshed every four hours as long as the
client is alive. In addition, Azureus exposes the DHT inter-
face through its plugin API, supporting additional services
such as per-swarm chat and ratings.

The Azureus DHT is based on Kademlia. As a DHT,
Kademlia has a put/get API and provides a logarithmic
bound in the total number of nodes contacted during each
of these operations. In Kademlia, each node is assigned a
unique identifier in a 160 bit key space. In Azureus, this
identifier is the SHA-1 hash of a peer’s IP address and DHT
port. Each node also maintains a local routing table con-
taining a set of buckets populated with other nodes that
are “closer” to ranges of the key space. Kademlia defines
proximity on the basis of the XOR metric, i.e., the distance
between keys X and Y is simply the integer value of X⊕Y.
The routing table is constructed so that each lookup reduces
the XOR distance to the target key by 1/2, providing loga-
rithmic lookup (for details, see [6]). Both the put and get

operations are iterative, performing successive queries of in-
termediate nodes until no closer contacts can be obtained.

Although conceptually straightforward, implementations
of the Kademlia algorithm need to cope with several chal-
lenges of operating on unreliable end-hosts.
• Churn: Nodes arrive and depart rapidly, making rout-

ing table entries stale. To address this, each routing
table bucket responsible for a certain key space range
contains redundant peers. In Azureus, buckets are of
size 20. This redundancy is used to conduct parallel
lookups. Instead of querying a single peer at each suc-
cessive routing intermediary, a set of intermediaries are
probed. To limit resource consumption, the number of
concurrent probes is limited to 10 in Azureus.

• Consistency: Churn results in routing tables that are

1http://azureus.sourceforge.net/

not only stale, but also inconsistent. Ideally, a value
need only be stored on the single node closest to the
key. In practice, that node may depart prematurely.
Further, concurrent lookups from distinct regions of the
overlay might not have a consistent view of which node
is closest. Azureus addresses inconsistency via replica-
tion. Each value is replicated on the 20 nodes closest
to the key from the perspective of the client performing
the put.

• Failures: Kademlia uses UDP for message transport,
requiring application-level detection of both message
and node failures. The default implementation relies
on 20 second timeouts for message expiry and considers
a node down once it fails to respond to two back-to-back
messages. To detect failures in the absence of network
activity, clients lookup a random key every 5 minutes.

The solutions adopted by Azureus to these challenges carry
tradeoffs. For example, failures can be detected more rapidly
through aggressive probing of routing table entries, improv-
ing consistency but increasing overhead. These tradeoffs are
often pinned to parameters that could benefit from mea-
surement, e.g., unnecessarily long timeouts degrade perfor-
mance. In the next section, we elucidate these tradeoffs,
characterizing them in practice through measurement.

3. MEASUREMENTS
This section reports profiling results of the Azureus DHT

collected during February–May, 2007 by 250 PlanetLab and
8 UW vantage points. First, we present a measured dis-
tribution of node session times in the DHT, discovering a
spectrum of liveness ranging from minutes to days. We then
synthesize these results with measurements of DHT main-
tenance overhead, providing a breakdown of message types
and a coarse estimate of the time required for new nodes
to percolate throughout the DHT’s routing tables. Next,
we examine the inconsistency of DHT routing tables as well
as their evolution over hours. Finally, we characterize the
probability of a DHT node replying to a protocol message
as a function of the time since the request was sent. In each
case, we refrain from fitting statistical distributions to data,
instead opting to make available the raw samples obtained
in our traces to the community.

3.1 Approximating session times
The distribution of node session times is central to many

design decisions underlying DHT implementations, e.g., ses-
sion lengths determine the rate at which routing table entries
need to be probed for freshness. Obtaining an accurate mea-
sure of session times requires a random sampling method and
knowledge about when a sampled node joins and departs.
Unfortunately, the DHT does not expose this information.
Instead, we provide an estimate of session times. To gather a
set of candidate nodes, we instrumented DHT clients to per-
form random get requests, collecting a set of 300,000 nodes
drawn from the tables returned by those requests. Immedi-
ately after observing a node, we issued a heartbeat message,
repeating this probe every 2.5 minutes. Nodes failing to re-
spond to two consecutive probes are considered down. This
check was continued for 48 hours after first observing a node.

Figure 1 shows the cumulative fraction of observed nodes
remaining responsive over time. Surprisingly, roughly 46%
of peers obtained from routing table entries did not respond
to even immediate probes, suggesting that a significant frac-

http://azureus.sourceforge.net/

Figure 1: Freshness of DHT routing table entries
and persistence for 48 hours after first observation.

tion of routing table entries are stale and point to inactive
nodes. After 48 hours, roughly 5% remained active, suggest-
ing a minority of highly available peers. The remaining peers
are spread over a spectrum, suggesting that session times in
the Azureus DHT are on the order of hours. Because we
sample existing nodes in the DHT, we cannot recover the
precise duration of their participation before our initial ob-
servation, nor can we account for the potential bias of long-
lived nodes being more prevalent in routing tables, which
may skew our measurements by over-representing long-lived
nodes. This bias is independently noteworthy for its impact
on node bootstrapping time, the topic we examine next.

3.2 Bootstrapping and overhead
DHTs operating on unreliable end-hosts are faced with

a design tradeoff when choosing how best to bootstrap new
nodes into the overlay, i.e., incorporate their resources. New
nodes are likely to be short-lived, and immediately incorpo-
rating them into the overlay risks polluting routing tables
with short-lived nodes and storing data on transient repli-
cas. Alternatively, incorporating only those nodes believed
to be stable requires predicting longevity, a challenging task
with transient participants and local history alone.

Azureus adopts the former method, incorporating new
nodes into the DHT immediately. However, their respon-
sibility is initially limited by the slow update rate of routing
tables in practice. When a node joins, it performs a lookup
of its identifier to populate its routing table and notify oth-
ers of its presence in the system. However, Azureus peers
preferentially respond to routing requests with longer-lived
entries in their routing tables. Thus, while new nodes can
immediately serve as replicas for their range of the key space,
they tend to percolate slowly into the routing tables of dis-
tant nodes.

This slow bootstrapping time is manifested in our traces
of DHT client activity, which we collected from 125 Planet-
Lab vantage points running the original Azureus client im-
plementation. Each vantage point joined the Azureus DHT
simultaneously, logging messages over a two day period. No
lookups or storage requests were sent beyond those issued to
maintain routing table freshness or migrate values to newly
joined nodes. Figure 2 gives the absolute number of each
Kademlia message type received over one hour intervals. For
the first few hours, the newly joined nodes receive few DHT

14

12

10

8

6

4

2

Figure 2: Two day trace of DHT messages received
by 125 vantage points on PlanetLab. Bars give the
absolute number of each measure type over a one
hour period.

messages. Load increases steadily over a period of several
days, indicating the time scale at which routing tables up-
date in practice. Our trace also suggests that DHT main-
tenance overhead dominates resource consumption for the
Azureus workload; routing table updates (FindNode) and
liveness checks (Ping) comprise 81% of messages.

3.3 Consistency and persistence
Apart from scalability, DHTs attempt to provide an ap-

pealing consistency guarantee; a get operation will return a
value if and only if the {key, value} pair exists in the DHT.
Unfortunately, this strong guarantee on consistency can only
be made in the absence of churn. Over long periods, data
replication and routing table redundancy are intended to fos-
ter, but not guarantee, consistency under realistic operating
conditions.

Promoting consistency through replication depends on a
number of implementation details. Each value in Azureus is
replicated at the 20 nodes closest to the target key. We refer
to this set of replicas as R. Replication compensates for the
inconsistent view of R in the short-term arising from slow
convergence of routing tables; we find that membership in
R varies greatly from different vantage points in the DHT.
Replication also mitigates the impact of unexpected failures.
As membership in R changes under churn, values ideally
migrate from node to node, remaining in the set of 20 closest
nodes at any point in time. In practice, slow failure detection
and unexpected failures shift the burden of ensuring data
persistence from the DHT to the publishing node, which
typically performs periodic puts to refresh data.

A familiar tradeoff arises from a replication-based approach.
A large replica set compensates for inconsistent routing and
reduces the need to frequently refresh data for persistence.
This comes at an increased cost for puts in terms of time,
nodes contacted, and storage. The replication factor con-
trols this tradeoff, but estimating consistency in terms of
replication requires workload data.

We study this tradeoff for the Azureus workload in terms
of both short-term and long-term consistency. In the short-
term, developers need an estimate of the replication required
for a put to be visible to the entire overlay. Over the long-
term, developers need an estimate of the rate of change of
the replica set to determine how often data should be re-
published to ensure persistence.

Fraction of insertions

(a) Short-term consistency (b) Evolution of replica set

Figure 3: Profiling routing table consistency. Left: The cumulative fraction of vantage points observing a
DHT put immediately after insertion. Right: Evolution of replication set over time from the perspective of
a single vantage point.

Short-term consistency: To measure short-term consis-
tency, we performed puts of random keys into the DHT,
measuring the visibility of each insertion from 250 PlanetLab
vantage points. Each insert was performed by a randomly
chosen PlanetLab host. The remaining vantage points per-
formed a get operation immediately after the insert com-
pleted, each returning a set of replicas—the 20 nodes closest
to the key from an individual vantage point’s perspective.
With consistent routing tables, each of these sets would be
identical. In practice, different vantage points observe dif-
ferent sets of replicas due to churn and slow routing table
convergence.

In the absence of perfect consistency, how many repli-
cas are needed for inserts to be widely visible? Figure 3(a)
shows the fraction of vantage points observing an insert im-
mediately after it completes, aggregated over 931 random
puts. Each line corresponds to a given level of commonal-
ity among replica sets. For example, the long, flat shape of
5 common replicas indicates that for the vast majority of
insertions (length of x-axis), at least 5 replicas are visible
to most vantage points (height on y-axis). 99% of vantage
points observe at least one replica out of 20 for 99% of in-
serts, and 98% of vantage points observe at least 5 replicas
for 98% of inserts. However, this quickly falls off as the de-
sired commonality in replica set increases. In the extreme
case of total replica set agreement, for 95% percent of mea-
sured puts, the inserting node does not share the same 20
replicas with any vantage point.
Long-term consistency: Data persistence is easily at-
tainable if the DHT exhibits both a consistent view of the
replica set in the short-term and stable membership in the
replica set over the long-term. Under changing replica set
membership, a straightforward method to promote data per-
sistence is to have nodes periodically reinsert data into the
DHT. How often to perform such refreshes depends largely
on churn. We examine the changing membership of the clos-
est replica set from 125 PlanetLab vantage points. Each
vantage point selected a random key and a 1, 8, or 24 hour
interval. To measure the evolution of the replica set, we
consider the change in membership between the replicas re-
turned by the initial insert and those returned by a lookup
after the chosen time interval. Figure 3(b) summarizes the
change in replica set for 639, 616, and 503 keys for 1, 8,

Figure 4: The probability of receiving a reply to a
DHT message as a function of time after sending.

and 24 hour intervals, respectively. These results suggest
that periodic insertions can be performed at the granular-
ity of hours with little impact on data persistence. After
one hour, more than 98% of replica sets shared at least five
members with those of the initial insert.

3.4 Response probability
The Azureus DHT uses UDP for message transport, as

its routing table redundancy and size would otherwise ne-
cessitate hundreds of TCP connections per-node. To limit
resource consumption, Azureus restricts the number of out-
standing messages and imposes processing rate-limits on in-
coming messages. The combination of unreliable message
delivery and limits on resource consumption severely hinders
performance. Marking outstanding messages as expired is
necessary to avoid blocking on the hard outstanding message
limit, but rate-limited processing inflates message RTTs, re-
quiring lengthy timeouts.

For a single node seeking to improve response time, dis-
abling local rate-limits is straightforward. However, choos-
ing an appropriate timeout for message responses requires
workload data. Figure 4 shows the probability of receiv-
ing a response to an outstanding message as a function of
the time since it was sent, measured over 45 million mes-
sages sent during our trace from PlanetLab and UW van-
tage points. Although most are received after just one sec-

ond, some responses arrive much later with the response
behavior influenced by a multitude of factors such as net-
work delays, routing table staleness, and rate limits. While
the response time for an individual message could vary sig-
nificantly, we observed that the response probability distri-
bution is remarkably stable over both short and long time
scales and across all vantage points.2 We leverage this sta-
bility in the next section to construct an improved lookup
algorithm parameterized by our measurements.

4. IMPROVING PERFORMANCE
The performance of the Azureus DHT is largely controlled

by the parameters that impact routing delay: lookup par-
allelism, message timeouts, and rate-limits on message pro-
cessing. The default Azureus implementation adopts set-
tings for these parameters tuned for its use of the DHT
largely as a redundant source of peers in large file down-
loads. DHT lookups in this environment need not be fast.
Downloads typically take many minutes or even hours, and
the extra time spent acquiring DHT peers has a marginal im-
pact on end-to-end download time in the common case. For
Azureus, limiting resource consumption is much more im-
portant than improving performance. A DHT node rapidly
dispatching hundreds of UDP packets to many end-hosts
concurrently may trigger intrusion detection systems or denial-
of-service filtering rules. However, this is precisely the be-
havior of a latency-sensitive DHT lookup with high paral-
lelism.

The original implementation of Azureus adopts a design
intended to limit resource consumption in its DHT. How-
ever, part of the promise of DHTs is their potential to serve
as a generic distributed systems building block, indepen-
dent of an individual service [9]. To fully deliver on that
promise, DHTs should be adaptable, exposing the perfor-
mance / overhead tradeoff to developers. This section re-
ports on measurements of the adaptability of the Azureus
DHT, examining the question: through local modifications
only, can the existing Azureus DHT be adapted to support
latency sensitive services? Our preliminary results suggest
that it can, potentially allowing future developers to lever-
age the large-scale Azureus DHT to build diverse distributed
services.

The original implementation of DHT lookup frames re-
source control in terms of 1) hard bounds on outstanding
messages and 2) rate-limits on message processing. Clearly,
disabling processing rate-limits locally improves performance,
and we do so in our modified implementation. For random
key lookups, this reduced median per-message response time
from 642 to 281 milliseconds. Adjusting rate-limits pro-
vides direct control over the performance / overhead tradeoff
at the granularity of per-hop messages, but adjusting this
tradeoff at the granularity of end-to-end lookups requires
eliminating hard bounds on outstanding messages.

Controlling resource consumption through bounds on out-
standing messages requires a method of expiring dead mes-
sages. Because DHT messages are small, typically fitting
in a single UDP packet, nodes rely on timeouts for expiry
rather than more sophisticated methods that may, for in-
stance, infer loss from out-of-order delivery. Selecting a
timeout value itself presents a tradeoff: too low a value re-
sults in redundant messages while too high a value degrades

2We do not present the data here due to space limitations.

performance, blocking while an almost certainly failed mes-
sage times out. The response times shown in Figure 4 sug-
gest that some messages may arrive after tens of seconds,
and in line with a resource-conserving approach, Azureus
adopts a 20 second message timeout. This timeout, in com-
bination with a limit of 10 on the number of outstanding
messages and low response probability borne out of stale
routing tables (Figures 1, 4) results in high end-to-end DHT
lookup times in Azureus. The Original lines of Figure 5 give
the CDF of time and resource consumption for 3,007 ran-
dom DHT get operations from PlanetLab and UW vantage
points. Median lookup time is 127 seconds.

Lengthy lookup times are the result of conservative time-
outs. Rather than attempting to tune the timeout value
for performance, we eliminate timeouts altogether. We in-
stead elect to parameterize our revised lookup algorithm
in terms of the number of expected responses. Measured
response probability data (Figure 4) allows us to compute
the expected number of message replies at a given instant,
i.e., the sum of the response probabilities of all outstand-
ing messages. We use a threshold on this expectation to
implicitly define the rate at which outgoing messages will
be sent, generalizing rate-limits on local queues as well as
hard bounds on outstanding messages. Our revised lookup
algorithm computes the number of expected replies every
100 milliseconds, issuing new messages whenever the expec-
tation drops below a specified parallelism threshold.

Parameterizing lookup in terms of expected message re-
sponses more accurately reflects the intuition behind parallel
searches—the natural knob for tuning the performance / over-
head tradeoff in Kademlia-based DHTs. Because of the in-
terplay between parallelism, timeouts, and outstanding mes-
sage bounds, tuning performance in the original Azureus
DHT implementation requires adjusting all three quantities.
Further, these adjustments depend on the number of ex-
pected failures. By leveraging aggregate profile data, we can
eliminate multi-variable tuning, instead presenting develop-
ers with a smooth tradeoff in terms of number of expected
results.

We explore the impact of our revised algorithm on perfor-
mance and overhead in Figure 5. The aggressive lines cor-
respond to conducting, in expectation, 6 parallel lookups—
essentially issuing messages as quickly as possible. This re-
sults in median end-to-end lookup time dropping from 127
seconds to 13. With aggressive parallelism, the total num-
ber of nodes contacted increases from 52 to 150. By elim-
inating timeouts, our revised lookup algorithm can reduce
lookup time by an order of magnitude for only a threefold
increase in the number of nodes contacted. Our algorithm
also improves performance even while controlling resource
consumption. The optimized results correspond to a paral-
lelism threshold of 0.8—simply compensating for expected
response failures. In this case, median lookup time decreases
from 127 seconds to 47 while increasing contacted nodes only
slightly from 52 to 60.

5. RELATED WORK
DHTs have seen a large body of work in recent years.

Steiner et al. report heavy tailed session times on the Kademlia-
based DHT used by eMule, another file-sharing network [10].
We observe a similar distribution of session times (live nodes
in Figure 1), but find that many routing table entries in the
Azureus Kademlia DHT are stale. We attribute this to the

(a) Completion times for DHT lookup algorithms (b) Cost in terms of number of nodes contacted

Figure 5: End-to-end lookup performance. With aggressive parallelism, median lookup time is reduced by
an order of magnitude.

fundamentally different use of eMule’s DHT, which provides
for the network’s core search functionality and is heavily
used as a result. Because Kademlia lookups trigger routing
table updates, comparatively heavy use has the side-effect
of promoting routing table freshness. Our work exposes the
need to explicitly and aggressively refresh routing tables in
the absence of demand or under heavy churn.

A separate analysis of eMule presented Stutzbach et al.
[11] finds that aggressive parallel lookups increase overhead
without significantly increasing performance. We find ex-
actly the opposite. Due to the prevalence of stale routing ta-
ble entries resulting from a fundamentally different workload
and refresh policy, increasing parallelism improves lookup
performance in Azureus substantially. The relative effec-
tiveness of coping with stale routing tables through parallel
lookups (as in Azureus) or aggressive refresh (as in eMule)
remains an open question for future work. But, by identi-
fying message response probability as the key parameter for
tuning the performance / overhead tradeoff, we develop a
revised lookup algorithm that can dynamically adapt paral-
lelism via local observations of response probability in either
case.

Ledlie et al. leverage the Azureus DHT to examine the
operation of network coordinate systems in the wild, finding
that using coordinate information can improve performance
when lookups do not experience timeouts [4]. Our work is
complimentary, demonstrating that the dominant influence
on performance in practice is failures and timeout-based re-
source control. Our revised lookup algorithm avoids reliance
on timeouts, clearing the way for further optimizations such
as network coordinates.

6. CONCLUSION
We have reported profiling measurements of a large-scale

DHT operating on end-hosts. The unpredictability of this
environment is manifested in heavy tailed session times, in-
consistent routing tables, and high overhead. Still, DHT
operation is robust, leveraging wide data replication and
routing redundancy. These techniques give rise to trade-
offs between availability, overhead, and performance, which
we have identified. While the Azureus DHT as implemented
trades off performance for availability and reduced overhead,
surprisingly, individual clients are not forced to do the same.
Through local modifications only, we demonstrate that a

node prioritizing performance can improve response time
by an order of magnitude, although it must expend more
resources to do so. Still, our analysis is not exhaustive,
and so we make available the traces we obtained during our
measurements to promote wider understanding of end-host
DHTs in the wild.

7. REFERENCES
[1] B. Cohen. Incentives build robustness in BitTorrent.

In Proc. of P2P-ECON, 2003.

[2] M. J. Freedman, K. Lakshminarayanan, S. Rhea, and
I. Stoica. Non-transitive connectivity and DHTs. In
Proc. of WORLDS, 2005.

[3] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy,
S. Shenker, and I. Stoica. The impact of DHT routing
geometry on resilience and proximity. In Proc. of
SIGCOMM, 2003.

[4] J. Ledlie, P. Gardner, and M. Seltzer. Network
coordinates in the wild. In Proc. of NSDI, 2007.

[5] J. Li, J. Stribling, R. Morris, M. F. Kaashoek, and
T. M. Gil. A performance vs. cost framework for
evaluating DHT design tradeoffs under churn. In Proc.
of INFOCOM, 2005.

[6] P. Maymounkov and D. Mazières. Kademlia: A
peer-to-peer information system based on the XOR
metric. In Proc. of IPTPS, 2002.

[7] M. Piatek, T. Isdal, A. Krishnamurthy, and
T. Anderson. Do incentives build robustness in
BitTorrent? In Proc. of NSDI, April 2007.

[8] S. Rhea, B.-G. Chun, J. Kubiatowicz, and S. Shenker.
Fixing the embarrassing slowness of OpenDHT on
PlanetLab. In Proc. of WORLDS, 2005.

[9] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz,
S. Ratnasamy, S. Shenker, I. Stoica, and H. Yu.
OpenDHT: A public DHT service and its uses. In
Proc. of SIGCOMM, 2005.

[10] M. Steiner, E. W. Biersack, and T. Ennajjary. Actively
monitoring peers in KAD. In Proc. of IPTPS, 2007.

[11] D. Stutzbach and R. Rejaie. Improving lookup
performance over a widely-deployed DHT. In Proc. of
INFOCOM, 2006.

	Introduction
	Background
	Measurements
	Approximating session times
	Bootstrapping and overhead
	Consistency and persistence
	Response probability

	Improving performance
	Related work
	Conclusion
	References

