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Abstract

The lack of universal multicast support in core internet
routers has motivated the development of so-called end
host multicast systems. These rely on participating hosts
to forward data to other users via a carefully designed
overlay mesh. While such strategies have the potential to
improve scalability and lower bandwidth costs, the unre-
liability and heterogeneity of end hosts in practice have
proven to be substantial obstacles to deployment. To
overcome these difficulties, we design, implement and
evaluate a live swarm—an unstructured overlay to dis-
seminate live multicast data. While swarms have proven
highly effective for very large file transfers, ours is the
first comprehensive evaluation of a practical swarming
design for real-time multicast delivery. Our system is
based on a small number of enhancements to the popular
file transfer system BitTorrent; we show that the result
is highly robust to nodes with asymmetric bandwidth,
high rates of churn, flash crowds, resource constraints,
and selfish users.

1 Introduction

The problem of widespread, scalable distribution of live
video and audio data on the internet has received much
attention recently, particularly as the popularity of the in-
ternet as a media outlet has increased. At present, con-
tent producers rely largely on two methods of solving this
problem: centralized, well-provisioned servers with high
upload capacity or commercially managed content dis-
tribution networks such as Akamai [1]. Neither of these
completely solves the problem at hand. Centralized de-
ployments scale poorly and are particularly vulnerable to
unexpected flash crowd conditions. Commercial content
distribution networks are closed systems that are only
economically feasible for large clients. The emergence
of individual users as content producers, evidenced by
the rising popularity of blogs and podcasts, motivates an

alternate approach.
In parallel with infrastructure based approaches, the

research community has investigated end host techniques
for providing scalable live broadcast [16, 11, 29, 14, 17,
25, 21, 10, 6, 31]. These systems rely on users participat-
ing in the broadcast to relay data to other users in order
to distribute bandwidth load among all participants. In
contrast to commercial solutions or traditional IP mul-
ticast, these systems provide easy deployment, scalabil-
ity without infrastructure support, and economic viability
for non-commercial users.

Research to date along these lines has mainly focused
on building efficient tree-based structures with the broad-
cast source at the root and viewers intelligently organized
in an overlay network. These systems have proven effec-
tive in certain circumstances and have yielded valuable
insight into the difficulties of delivering scalable live con-
tent, but thus far, a complete solution has not emerged.
We consider several difficulties encountered when apply-
ing tree-based approaches. These also serve to motivate
design goals of any comprehensive end host multicast
system.

• Capacity utilization: An ideal overlay should make
productive use of all available upload capacity of
peers in the overlay [10]. In a straightforward tree
based design, a single parent supports all download
requirements of its children. The upload capacity of
peers with no children is not used.

• Resource availability: Constructing a viable broad-
cast tree from the pool of participating users is not
possible if the download demand exceeds accessi-
ble upload capacity. This circumstance may arise
due to heterogeneous users with asymmetric down-
load and upload bandwidths. As this property can
change suddenly under churn, any practical system
requires a strategy for quickly detecting the prob-
lem and either regulating resource poor participants
or integrating stabilizing resources into the overlay.
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• Robustness to churn: Node failure and churn can
be particularly disruptive, yet end hosts are notably
unreliable [3] and measurements indicate channel
surfing is as prevalent online as off [28, 26]. When a
parent departs, all of its children must be moved and
immediately supported by a new parent. Service is
disrupted if this transition cannot be made quickly,
or if a parent departs unexpectedly. A successfully
designed system should support participants with-
out interruption even when churn is high.

• Simplicity and maintainability: It is possible to ad-
dress many of these challenges by adding mecha-
nism to tree-based solutions. For example, Split-
Stream improves capacity utilization by setting up
a mesh of trees and sending divisions of data down
separate trees [10]. However, practicality requires
that we also strive for design simplicity—complex
coordination is unlikely to work in the heteroge-
neous and rapidly evolving environment of the in-
ternet.

Instead of a tree-based mechanism, Pai et al. [23] pro-
pose Chainsaw, an unstructured swarm to distribute live
multicast data. Swarming has proven effective for bulk
file transfer as demonstrated by the popularity of peer-to-
peer systems such as BitTorrent [12] and eDonkey [13],
yielding good performance and resource utilization [5].
These programs break up large files into many small
blocks that are independently distributed among peers.
Because blocks are generally distributed out-of-order
and with different orders for different peers, each client
can redistribute blocks as soon as they are received. The
differing orders in which blocks are obtained by each
peer allows them to distribute blocks of interest to others
immediately—rather than only after obtaining the entire
file.

Although swarms are robust and simple, it is not obvi-
ous that random fetches of blocks from neighbors would
be effective for delivering data in real-time, particularly
under resource constraints. Pai et al. show through sim-
ulation that their custom swarming algorithm can work
for live data delivery in a homogeneous, cooperative,
resource rich environment with infrequent joins. Our
interest in this paper is to investigate whether this ap-
proach can be generalized to a more realistic setting,
with self-interested users, heterogeneous and asymmet-
ric node characteristics, high churn, flash crowds, and
resource limits.

To study this question, we designed and implemented
LiveSwarms, a real-time multicast delivery system based
on a small number of changes to BitTorrent. Using host
characteristics derived from measurement of real deploy-
ments of live multicast, we show that with one notable
exception, the existing mechanisms in BitTorrent work

extremely well for live delivery of multicast data. In
particular, BitTorrent’s tit-for-tat rule for enforcing reci-
procity between peers yields excellent delivery bounds
in practice while providing an incentive for users to con-
tribute maximum resources to the swarm. The one ex-
ception is that as resources are removed from the swarm,
it may no longer be possible for it to achieve real-time de-
livery at the rate the data is being produced. Even here,
we show BitTorrent does fairly well, typically limiting
data flow to a few resource poor nodes rather than caus-
ing all nodes to miss their deadlines. Further, since new
nodes need to catch up to the broadcaster’s data produc-
tion point, adding even well-provisioned nodes to a re-
source constrained swarm can cause an otherwise well
functioning overlay to miss delivery deadlines.

To address this issue systematically, we modify the
mechanism by which nodes join and leave LiveSwarms
broadcasts in order to monitor overall resource usage and
predict when the system is in about to become resource
constrained. We can then use admission control, lim-
its on the aggressiveness of newly joined nodes, and/or
standby nodes to provide spare capacity to restore sys-
tem balance. We show that the resulting system is robust
even under extreme conditions of high churn, asymme-
try, and resource limits.

The remainder of this paper discusses these issues in
more detail. In Section 2, we put our work in the con-
text of related work on end host multicast and content
distribution systems. In Section 3 we describe the salient
features of BitTorrent as a basis for describing our mod-
ifications to the system in Section 4. We describe our
evaluation methods and experimental design in Section 5
before presenting our results in Section 6. We discuss the
implications and future directions of our work in Section
7 and conclude in Section 8.

2 Related work

The problem of scaling the delivery of live streaming
data has been extensively studied. We first trace the evo-
lution of these systems, followed by a discussion of the
seemingly separate issue of content distribution systems
focused on getting large quantities of data to many peo-
ple as quickly as possible.

2.1 Live streaming

The notion of an end system approach to overlay mul-
ticast was pioneered by Narada, Overcast and Yoid
[16, 17, 14]. Motivated by the lack of end-to-end mul-
ticast support in the network core, they explored the po-
tential benefits of an overlay strategy. Their key observa-
tion is that while overlay multicast lacks the efficiency of
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in-core multicast, the penalty of overlay routing in terms
of throughput and latency is low enough to justify its use.

While there are differences between these systems,
they all share the general property that they construct
a single, source-rooted, multicast tree. This technique
obviously provides more scalability than a centralized
server and is conceptually simple, but it may not make
efficient use of the capacity of participants. Since an end
host can only function as a parent in a tree-based sys-
tem if it is capable of completely supporting at least one
child, hosts with bandwidth asymmetries that allow them
to view a broadcast at a particular rate, but not forward at
that rate, cannot contribute any resources to the overlay.
Additional capacity is lost because each peer can only
support an integral number of children, so each peer is
likely to waste some excess upload capacity that is not
sufficient to support a full child. Finally, hosts which
comprise the leaves of the tree contribute nothing, even
if they could support children or portions of children.

The issue of capacity utilization was the primary mo-
tivation for the development of SplitStream, a multi-tree
protocol [10]. The key idea behind a multi-tree design is
that to make use of the capacity at the leaves of a tree,
the broadcaster can split the data stream into k stripes of
data that traverse k different trees constructed over the
same peer set. The trees are constructed so that each
host participating in the broadcast is an interior node in
as few trees as possible, thereby spreading the dissemi-
nation burden across as many nodes as possible. If there
is no data redundancy across the various streams, a node
failure in any one of the k trees could result in loss of
delivery. To increase resilience, SplitStream transmits
the stream encoded using either erasure coding or special
video codecs which support multiple description coding
(MDC). Both allow the whole stream or a useable portion
of it to be recovered without receiving all of the data, al-
beit at a cost in computational and storage complexity.
In the case of erasure coding, increased playback delay
is also required [9, 8, 22].

In order to function as desired, SplitStream must main-
tain several invariants. First, each node must be part of
at least some specified number of the k trees. Second,
each node must not have more children than its capac-
ity constraint. Third, no cycles can be introduced into
the trees when repairing them in response to arrivals and
departures. Finally, every effort must be made to keep
each peer as an internal node in as few trees as possible
to prevent a single point of failure disrupting multiple
stripes simultaneously. In practice, considerable proto-
col complexity is required to maintain these invariants
under churn.

2.2 Content distribution

Distribution of static content without real-time perfor-
mance constraints has received much attention in both
the research and software development communities.
Recently, swarming system designs have become pop-
ular as a means to provide scalable file dissemination to
many users. BitTorrent is the prototypical example of
such as system, and its popularity has surged in recent
years [12]. Many other swarming designs have been pro-
posed by the research community. We discuss one of
these, Bullet [19], and its successor Bullet′ [18].

There are several features which are common to all
swarming designs. First is the decomposition of data
into small blocks that are exchanged among peers. These
blocks, emanating from one or more sources, are dis-
tributed out of order from one peer to another. Since
peers request blocks in a distinct order, it is likely that
each one has interesting data to forward from the per-
spective of other hosts in the swarm. Thus, out of order
delivery is essential to swarming, yet live multicast re-
quires in-order delivery in real-time, making the appli-
cability of swarms to real-time delivery an open ques-
tion. Fairness is often enforced by tit-for-tat download-
ing, wherein peers preferentially upload to other peers
that have recently provided them with data.

Hybrid approaches that combine tree-based content
distribution with distributed swarming techniques have
also been proposed. Bullet proposes the creation of a
mesh of connections in addition to a main tree-based
structure [19]. This mesh is coupled with distributed al-
gorithms to ensure efficient distribution of relevant data
throughout the augmented multicast tree/mesh. Blocks
not received quickly via the originally constructed tree
are obtained through the mesh. In following work,
the Bullet designers evaluated a large space of design
choices for content delivery. The result, an enhanced ver-
sion of Bullet referred to as Bullet′ [18] compares favor-
ably to both SplitStream and BitTorrent. Although our
work is based on BitTorrent, we believe many of the per-
formance optimizations in Bullet′ could be applied to our
system as well.

Finally, Pai et al. demonstrate with Chainsaw that
swarms can be used for live multicast delivery [23]. Al-
though inspiring, their study was in a limited setting, us-
ing simulation with rare join events, homogeneous over-
provisioned and fully cooperative clients, and a custom
algorithm for pulling data from the broadcast source.
Our interest is in developing a practical system we can
deploy, and thus we must consider the impact of a wider
variety of real-world factors. We start from the swarming
system in widest use today, BitTorrent, and add the min-
imal set of changes necessary to make it work well for
live delivery. Before describing these changes, though,
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we must discuss BitTorrent’s algorithms in more detail.

3 BitTorrent

In deciding which swarming design to augment and eval-
uate, we were guided by our design goals of simplicity
and maintainability. As we will see, BitTorrent offers a
relatively simple, open protocol that is likely to be main-
tained by its currently active development community
[4, 7]. BitTorrent has performed quite well in practice,
with many public torrents supporting several thousand
concurrent users. We were also attracted to the likelihood
that future improvements to BitTorrent would be easily
integrated into our design, and further discuss some of
these potential benefits in Sections 6 and 7.

BitTorrent was designed as a swarming distribution
tool for large files and generally operates as we described
swarming systems previously. Peers in the swarm ex-
change data blocks and control traffic with their set of
directly connected peers. This set of peers is unstruc-
tured and random, requiring no special recovery oper-
ation when new peers arrive or existing peers depart.
The control traffic required for data exchange is minimal:
each peer transmits messages indicating the data blocks
they currently possess and messages indicating their in-
terest in the blocks of other peers. These control mes-
sages are used to maintain state at each peer that is cor-
respondingly minimal: peers maintain a list of hosts that
are currently interested in obtaining data from them and
a list of peers with which they are actively exchanging
data. These lists need not be identical. From the perspec-
tive of one host Y in the swarm, a peer that Y is actively
transmitting to is referred to as unchoked. Peers con-
nected to Y but not receiving data are said to be choked.
The possible peer states for a given host are summarized
in Table 1.

In addition to the interest state information, BitTorrent
uses a rate-based tit-for-tat fairness mechanism to deter-
mine when to switch peers between the choked and un-
choked states. Rate-based tit-for-tat simply means that
peer X will be preferentially unchoked at peer Y based
on the recent transfer rate of blocks from X to Y . Fi-
nally, peers may also be optimistically unchoked. In ad-
dition to preferentially unchoking peers selfishly, sev-
eral unchoked slots will be given to peers who have not
“earned” such status in a tit-for-tat sense. This is done
in a round robin fashion to bootstrap new peers into the
tit-for-tat process and allow peers to discover new, poten-
tially better sources of data.

Now that we have specified how peers exchange data
and maintain state information, we turn to their block
request strategy. BitTorrent peers obtain data only af-
ter requesting it from other peers—a pull-based system.
Based on the block availability information garnered

from the control traffic among directly connected peers,
each host requests blocks using one of two strategies:
random request order or local rarest first. The random
strategy, used when the number of local connections is
small, makes block requests in a random order subject to
availability. Once many connections are active, BitTor-
rent switches to a policy of requesting those blocks least
available among its local peers. As verified in [5], this
essentially eliminates the “last block” problem, wherein
peers very close to download completion must wait a dis-
proportionately large amount of time to obtain the last
block they require because it is not available among lo-
cal peers.

Finally, in order to initially connect to a swarm, clients
download a metadata information file, called a torrent,
from the content provider, usually via a normal HTTP
request. This metadata specifies the name and size of the
file to be downloaded through the BitTorrent swarm, as
well as SHA-1 fingerprints of each block of the larger
file to verify data integrity. The metadata file also spec-
ifies the address of an HTTP tracker server for the tor-
rent, which is a specialized web server that coordinates
the activity of each client participating in the swarm by
maintaining a list of current active peers and periodically
delivering a random subset of other peers in the system
to each swarm participant.

4 LiveSwarms

Despite BitTorrent’s widespread success at distributing
large files, it is not immediately clear that it can be
adapted to the problem of broadcasting live data. There
are two main obstacles. First, BitTorrent relies upon the
whole file existing before distribution. This is necessary
in order for clients to know the cryptographic hash values
of the blocks and which blocks are valid to request out-
of-order. Second, BitTorrent makes no attempt to satisfy
the performance constraints associated with real-time de-
livery.

To address these challenges, we present LiveSwarms,
an implementation of a modified BitTorrent protocol de-
signed to meet the demands of sending live, streaming
data. We enumerate the modifications made, followed
by describing the motivation for each of the changes.

4.1 Protocol changes
• Push from pull: We modified the BitTorrent client

so that, rather than responding to client requests,
the broadcasting host pushes data to its immedi-
ate peers [18]. We did not change the behavior of
peer-peer interactions when neither are the special
broadcasting node, but as pointed out in [5], the up-
load capacity of the source is precious, and a pull
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Choked Unchoked
Interested X wishes to download data from Y , but is

currently prohibited.
X is currently downloading data from Y .

Uninterested Y has nothing of interest to X , and only con-
trol traffic is exchanged.

Only possible if X has just completed down-
load of all available desired data from Y and
is about to send an uninterested message.

Table 1: The possible states of peer X from the perspective of peer Y in BitTorrent. The BitTorrent client maintains a
large number of peers, of which only a few are both interested and unchoked at any given time.

based strategy tends to result in the source transmit-
ting the same block many times. In our implemen-
tation, the broadcaster allocates its entire upload ca-
pacity towards distributing the most recently pro-
duced block.

• Block signing: The seed may optionally crypto-
graphically signs blocks as they are generated, since
cryptographic hashes of live data cannot be dis-
tributed in the torrent metadata file. This allows
clients to verify data integrity despite blocks being
forwarded through potentially untrustworthy peers.

• Resource monitoring: Peers report their upload ca-
pacity to the tracker as part of joining the broadcast.
This information is used to determine how much ex-
cess upload capacity exists in the system at a given
time and, if possible, to introduce extra resources
when a swarm becomes resource constrained.

• Admission control: The tracker may provide newly
joined peers with a certificate allowing them to re-
quest blocks from the past only if there are enough
resources available to support this behavior from the
new peer.

The modifications described so far require protocol
changes to BitTorrent in the form of modifications to
control messages and peer handling of them. The push-
pull change requires that the broadcaster send data mes-
sages without being prompted by requests. On the re-
ceiving end, peers must be modified to willingly accept
data messages they did not request when sent from the
broadcaster. Clients must also include an indication of
their upload capacity during their initial negotiation with
the tracker to facilitate resource monitoring.

4.2 Policy changes
Beyond these required changes to the protocol, we make
two changes to the existing policy of clients. First, we
specify that the BitTorrent client always uses random
block requests and never switches local rarest first. Since
each peer is generally consuming data at the broadcast
rate, the number of blocks a live swarm is distributing is

relatively small, leaving little chance for different local
peer sets to stratify in terms of block availability. In ex-
periments performed both with and without local rarest
first, we noted no difference in playback performance,
and prefer the conceptual simplicity of a single random
block selection strategy.

Our second change in policy involves our client buffer-
ing and playback strategy. When a client first connects to
the swarm, it begins requesting video data from 30 sec-
onds prior to the current playback point, as determined
by most recent data available from its immediate peers.
Once 15 seconds of contiguous data are available, play-
back begins. If a block is ever unavailable when it is
required for playback, the client stops and waits until 15
seconds of contiguous data is again present in its play-
back buffer. We refer to such an event as rebuffering,
and such behavior is common among commercial video
players. Since blocks are often received out-of-order, re-
buffering often takes only a few seconds when it does
occur. The initial request point is chosen in the past
because past blocks are more likely to be available and
quickly obtained, thus reducing the time required for ini-
tial buffering.

Finally, LiveSwarms is a real-time data delivery sub-
strate that we evaluate largely in the context of streaming
media, but we note that we do not yet provide a complete
streaming video solution. We argue that this layering
approach is the right design decision. Tight integration
of the video encoding method and the data distribution
method is likely to result in challenging implementation
issues when attempting to change either one.

4.3 Resource monitoring

Resource monitoring occurs in LiveSwarms by periodi-
cally computing the resource index of the overlay. We
use a form of the definition of resource index presented
in [15]. For a swarm with broadcast rate r, peer set S
and upload capacity of client p denoted Up, the resource
index is:

resource index(S, U, r) =

∑
p∈S Up

r × (|S| − 1)
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This quotient represents the current balance of upload
capacity and download demand in the overlay system.
The numerator reflects the sum total of upload capacity
in the swarm, including the broadcaster. The denomina-
tor represents the download demand, which in our con-
text is simply the broadcast rate multiplied by the num-
ber of downloading peers. This includes all users except
the broadcaster, which need not consume any resources.
When this function is 1, the upload capacity of the peers
in aggregate exactly matches their download demands.
When it dips below 1, the broadcast rate cannot be sup-
ported, and when it is above 1 there are excess upload
resources in the swarm.

With knowledge of the resource index, the tracker may
react to resource constrained situations in two ways: ei-
ther limit drains on the resources or increase the re-
sources available. LiveSwarms provides for both of these
through simple modifications to the tracker described be-
low. Additionally, because of BitTorrent’s tit-for-tat fair-
ness, peers have an incentive to contribute as much as
possible to the system, helping avoid resource poor situ-
ations in the first place.

First, in an attempt to reduce the burden of new users,
the tracker can prevent new clients from swarming over
old data during their initial buffering period. This can
be easily accomplished if the tracker issues each join-
ing peer a certificate allowing them to download blocks
before the current one. Peers would exchange these cer-
tificates, with the net effect that new peers place no addi-
tional burden on the system unless the system has excess
capacity.

Second, since the tracker is capable of monitoring the
overall health of the system via the resource index, it
can decide when high resource peers need to be added
to the system in order to stabilize it. The strategy of
integrating stabilizing resources has been advocated in
[15] in the context of the End System Multicast (ESM)
project. In overlay multicast strategies where the topol-
ogy is carefully constructed, excess resources must be
carefully placed in order to maximize their usefulness.
In the case of the tree based topology used by ESM, sta-
bilizing resources are most effective when placed close
to the broadcasting root. However, the shuffling required
to maintain a structured topology—like ESM’s tree—is
likely to be a delicate operation when integrating sta-
bilizing resources, particularly during the resource con-
strained period when they are needed. By contrast, sta-
bilizing resources are treated just like any other peer in
by LiveSwarms. When a high capacity peer connects, its
influence percolates throughout the overlay. We discuss
this further in Section 6.5.

5 Evaluation methodology

Given this design, we seek to establish several funda-
mental properties regarding the feasibility of a swarming
approach to providing scalable live broadcast. We first
show that a swarming approach can successfully provide
loss-free playback with common case behavior of client
arrivals, departures, and upload capabilities. Second, we
determine that swarms are naturally robust to flash crowd
conditions and sudden user departures. Next, we pro-
vide evidence that swarming techniques can successfully
cope with periods of high churn. We then explore the
limits of our design by studying resource constrained sit-
uations and provide guidance for avoiding poor swarm
performance. Finally, we further explore how stabilizing
resources can be integrated into a swarming system, and
restore the ability of our system to cope with the reality
of asymmetric connectivity due to NATs and firewalls.

To evaluate LiveSwarms we deployed our modified
BitTorrent client on the Emulab network testbed [30].
Below, we describe the particular details of how we eval-
uated our system and what metrics we used to gauge its
success.

5.1 Experimental setup

We make several assumptions which reduce the com-
plexity of the emulation environment. First, because the
majority of end hosts have several times more download
capacity than they do upload capacity, we assume that
the only limiting factor in transfers is upload capacity. In
doing this, we do not limit the download rate of hosts in
any way, but our experiments show that this never results
in unrealistic rates.

In running our experimental broadcasts, we evaluate
our performance in terms of the amount of time clients
spend buffering because this is the likely metric by which
an end user will measure the effectiveness of a video
broadcast tool.

Because the constraint we explore was access link up-
load bandwidth, we model connections by putting all of
the hosts on a single LAN and using the software upload
rate-limiter provided in the official BitTorrent implemen-
tation to limit how much each host could contribute. We
do not impose any propagation delay or packet loss on
our hosts in the experiments presented. These factors
had no significant impact on our results for several test
broadcasts conducted both with and without having them
activated.

The data rate in all our broadcasts is considered to
be 250 kilobits per second. Depending on the video
codec, this is generally sufficient to provide 30 frames-
per-second playback at a resolution of 320 × 240 and
stereo sound. We use a block size of 128 kilobytes.
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5.2 Churn model

As pointed out by existing studies of streaming work-
loads on the internet, system churn can be modeled by
characterizing the arrival process of new clients and the
duration of their stay in the system. These studies show
that the arrival process can be characterized as a Pois-
son arrival process (i.e., exponential interarrivals) over
short timescales, but the arrival rate could have cyclic
variations over long periods [2, 28, 27, 26]. The stud-
ies also show that the mean time between arrivals could
be as low as one second or less for the most popu-
lar streams [27, 26]. The session durations are heavy-
tailed [27, 26], with just a few clients staying in the sys-
tem for long durations. We use these findings to gener-
ate workloads where interarrival times are drawn from
an exponential distribution and the session durations are
drawn from a Pareto distribution. The relative ratio of
the means of the two distributions determines the aver-
age number of users in the system.

5.3 Upload capacity

Upload capacity (Kbps) Percentage of peers
64 20%
192 40%
500 25%
2500 15%

Table 2: Our upload capacity distribution.

In considering how to allocate upload capacity to hosts
in our experiments, we attempted to reconcile obser-
vations from several real-world measurement studies.
Saroiu, et al. derived capacity estimates for participants
in the Gnutella peer-to-peer network [24]. Following
Bharambe, et al. [5], we discard the tail of dialup users.
Table 2 is the result with each capacity halved. We use
this distribution in many of the experiments described
in Section 6. We dampened the capacities in this way
to more accurately reflect likely real world situations.
The resource excess from the original distribution corre-
sponds roughly to the “optimistic” resource availability
presented in [26]. In order to provide a more conser-
vative view of likely user capacities, we elected to more
closely match the “pessimistic” estimations from that pa-
per.

Unless otherwise specified the broadcaster’s upload
capacity is fixed at 5000 Kbps in order to represent a
reasonably well provisioned source.

6 Results and evaluation

In order to fully understand how well LiveSwarms would
work as a substrate for live video or audio broadcasts, we
evaluated our system under a variety of conditions de-
signed to reflect real-world situations as well as extreme
circumstances. Notably, we perform no admission con-
trol whatsoever, even when this would certainly help the
system. Our results without any admission control are in-
tended to inform such policies during actual deployment.

6.1 Moderate churn

To evaluate LiveSwarms in a likely broadcast setting, we
first tested a broadcast across a pool of 135 peers with
upload capacities drawn from the values of the distribu-
tion shown in Table 2. The broadcast duration was 1
hour with interarrival times and durations given in Fig-
ures 1(a) and 1(b), respectively. The number of active
peers throughout the broadcast is shown in Figure 1(c).
The average amount of time required to obtain a 15 sec-
ond initial buffer was 11 seconds across all peers for the
entire broadcast, and all broadcast data was received in
time for playback demands.

Our intent in presenting this example is to establish
a performance baseline for later evaluations and to de-
scribe the behavior of our implementation in the com-
mon case of rapid early arrivals and short durations with
moderate resource availability as well as to study some
basic aspects of our approach. Figure 2(a) displays the
aggregate traffic characteristics of the entire swarm. The
resource utilization of the peers in aggregate tracks in-
creases in capacity as new users join, and is strictly
greater than the download demands for all but the first
few seconds of the broadcast, indicating that we quickly
integrate new resources into the swarm as they arrive.
Figure 2(b) displays the resource index throughout the
broadcast. The over-provisioning indicated here corre-
sponds to the gap between upload capacity and broadcast
demands in Figure 2(a). As users depart from the system,
the resource index is dominated by the large capacity of
the broadcaster.

We demonstrate the buffering behavior of new users
in the system in Figure 2(c). The download consump-
tion of the first 10 hosts in shown. We observe that as
new users join the broadcast, they experience a surge in
download performance before leveling off to the broad-
cast rate. This behavior is a result of selecting an initial
playback point 30 seconds in the past to reduce the time
needed to fill a 15 second buffer. The rationale is that a
resource rich swarm can support new users that initially
contribute very little for a brief time; new users can more
quickly obtain old data, thus reducing their initial buffer-
ing period. Once they have consumed all available old
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(a) CDF of interarrival times (b) CDF of durations (c) Total users

Figure 1: Synthetic churn characteristics for a resource rich 135 user broadcast.
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Figure 2: Traffic characteristics for a resource rich 135 user broadcast; upload capacities taken from Table 2.

data, their download rate settles at the production rate,
and they can contribute to the swarm. Although we in-
dicate that new users initially contribute nothing to ex-
isting users, they are capable of swarming over old data
amongst one another. This can be especially helpful in
mitigating the effects of flash crowds.

Finally, understanding how blocks actually flow
through the swarm is important. Since each host is only
actively exchanging data with a small subset of its im-
mediately connected peers, it might be expected that
blocks would take long paths during their flow through
the swarm. In fact, each block traverses an implicit tree
in which the degree at each node is approximately the up-
load capacity of that node divided by the data rate. While
this means that many nodes will only have a child or two
in this tree, some nodes (and especially the broadcaster)
will have very high degree, drastically reducing the depth
of the tree. A critical point is that this tree is highly
dynamic and unstructured. The round-robin fashion in
which the broadcaster distributes blocks as well as the
changing set of unchoked peers at each host ensures that
different blocks will likely traverse different trees. As
a consequence, different nodes tend to obtain different
blocks at different times, encouraging exchange of data
throughout the swarm. Both aspects of this behavior can
be seen in Figure 3, which depicts the path which two
consecutive blocks take through the swarm described by

Figures 1 and 2. Even in the case of few users and blocks
separated by only a few seconds, the path of each differs.

6.2 Flash crowds and sudden departures
Given our successful playback in a typical broadcast set-
ting, we turn our attention to evaluating LiveSwarms at
extremes as a means to gauge its robustness. Arguably
the most challenging problem in constructing a feasible
overlay for supporting real-time traffic is periods of rapid
arrival encountered during flash crowds.

We consider the following synthetic flash crowd ex-
periment coupled with sudden drop: first, the broadcast
is started and a set of 80 peers with capacities drawn from
Table 2 connects immediately. After several minutes, 70
new users, also with capacities drawn from Table 2, be-
gin to connect at a rate of 1 per second. After several
more minutes, all the original peers depart, leaving only
the peers that joined during the flash crowd. Figures 4(a)
and 4(b) depict resource demand and availability during
the broadcast, with Figure 4(c) displaying the number
of late blocks normalized by the number of actively par-
ticipating hosts. Although we observe some late blocks
during the flash crowd, the actual impact from the view-
ers’ perspective is quite small, with an average rebuffer-
ing time of only 3 seconds and no user rebuffering for
longer than 7 seconds. Since blocks can be received out-
of-order, a rebuffering user may need only a few missing
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Broadcaster

Figure 3: The propagation of two successive blocks early in the broadcast described by Figures 1 and 2.
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Figure 4: Performance of LiveSwarms under a synthetic flash crowd.

blocks in the current 15 second window. This accounts
for our quick rebuffering time even in flash crowd condi-
tions.

Interestingly, although rapid arrivals have an impact
on playback quality, there are no late block events asso-
ciated with the sudden departure of the 80 initial users.
We attribute this to the large peer pool BitTorrent main-
tains and its ability to cope with being choked by other
peers. In the course of a normal connection, two peers
are likely to choke and unchoke each other many times
as each independently reasons about the best sources of
available data. To a LiveSwarms client a peer discon-
necting is no different than being choked by that peer—a
situation the BitTorrent substrate was designed to handle
well. As a result, we inherit robustness to sudden depar-
ture through no special effort of our own. This is just one
of the benefits of basing our implementation on an exist-
ing protocol, and we will return to this issue to discuss
further benefits in Section 7.

6.3 High churn
Encouraged by the performance of our system under
flash crowds and sudden departures, we conducted fur-
ther experiments to determine the limits of our system
under periods of high churn. In the experiment reflected

in Figure 5, 60 clients connect to a broadcast and are
allowed to stabilize. Afterwards, one client joins every
second as a distinct client departs, keeping 61–63 users
in the system once the period of high churn begins, as
shown in Figure 5(c). Upload capacities are drawn from
the distribution of Table 2. In contrast to the flash crowd
experiment described in Section 6.2, here there are no
stable hosts in the swarm except for the broadcaster. A
loss graph is not presented since our results are so posi-
tive: only 4 hosts out of 110 experience any rebuffering
whatsoever, and those that must do so for only 1, 3, 4,
and 4 seconds, respectively. As expected, this loss oc-
curs during the period of churn and impacts only peers
with less upload capacity than the data rate. We attribute
this to BitTorrent’s tit-for-tat fairness mechanism.

Coupled with the results presented Section 6.2, this
experiment suggests that for robustness to high churn
and flash crowds, a resource index above 2 is needed in
our current implementation. In the next section, we ex-
plore the limits of our implementation under more mod-
est churn conditions.

6.4 Periods of constrained resources
A natural way to evaluate the efficiency of an overlay
multicast system is to evaluate its performance in re-
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(a) Gradually reducing resource index (b) Absolute number of lost blocks across all
peers

(c) Broadcast rate with download throughput
of the first peer

Figure 6: A resource constrained broadcast with one asymmetric host arrival per minute

source constrained situations. We consider the perfor-
mance of LiveSwarms in several of these situations as a
means to determine its efficiency limits.

We consider two experiments designed to intention-
ally cause resource constrained collapse of our overlay
method: gradual and sudden arrival of resource-limited
peers. Figure 6 displays a summary of the former. In
this experiment, users connect to the broadcast at a rate
not exceeding one per minute. They each have upload
capacity roughly 32% of the broadcast rate, depressing
the resource index with each new connection. Compar-
ing Figures 6(a) and 6(b) reveals that peers begin to lose
blocks between resource index 1.15 and 1.1. Although
we will see that this is not a particularly useful observa-
tion when deciding whether a real-world broadcast can
be supported, the nature of the losses at the resource
index 1 boundary provide interesting insights into the
failure properties of LiveSwarms. The late blocks dis-
played in Figure 6(b) are experienced by only two peers
among 32—the remaining 30 experience uninterrupted
playback. Further, the two peers that experience late
blocks essentially starved—each spending more than a
minute rebuffering near the end of the broadcast.

In this type of resource constrained situation, we in-
herit a desirable failure property from BitTorrent’s tit-
for-tat fairness mechanism. Rather than degrade the per-
formance of all peers, tit-for-tat preferential uploading

results in the first peer that cannot competitively pro-
vide interesting data being choked very quickly by all
its local peers, as they are saturated with transfers that
improve their chance of useful data exchange, whereas
the choked peer has nothing of interest. Tit-for-tat also
tends to disrupt peers in decreasing order of contribution
to the system, if possible. In other words, the first users to
experience service disruption are the ones that consume
more resources than they contribute. Although choked
peers can hope for new interesting data from the broad-
caster or an optimistic unchoke designed to discover new
sources of data, these will not be enough for it to over-
come its data deficiency as long as its local peer set is
resource constrained. Notice that this has the effect of
artificially raising the resource index for the remaining
peers, enabling them to achieve superior playback. Since
the choked peer consumes little data due to tit-for-tat, its
presence does not significantly impact playback quality
of its local neighborhood, so long as resource availability
does not decrease further.

Although gradual arrivals of resource poor hosts allow
us to pinpoint the minimum resource index required for
steady-state playback, it is not particularly informative
in the case of churn. To investigate the failure proper-
ties of our design in this case, we slightly modified the
previously described experiment in terms of arrival rate.
Every minute, a group of 10 peers with identical upload
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(a) Suddenly reducing resource index (b) Lost blocks, normalized by the total num-
ber of peers

(c) Broadcast rate with download throughput
of the first peer

Figure 7: A resource constrained broadcast with 10 sudden arrivals per minute

capacity at 65% of the data rate connects to the swarm.
This has the effect of suddenly reducing the resource in-
dex, as seen in Figure 7(a), and, because new peers re-
quest old data, suddenly consuming excess swarm up-
load capacity. These twin drains on swarm resources
first impact playback when the resource index makes its
abrupt change from roughly 1.3 to 1.2, as shown in Fig-
ure 7(b).

We see that even though the swarm is well equipped
to provide steady-state playback with 20% more capac-
ity than required, it cannot cope with the resource drain
of sudden arrivals. Figure 7(c) shows the download rate
of the first peer and gives further insight into this phe-
nomenon. Each dip in the throughput reflects the sudden
arrival of new peers suddenly consuming the resources of
other swarm hosts. Although new peers can swarm over
old data in addition to obtaining it from existing peers,
existing users like the one shown are forced to incur a
brief drop in download rate due to a sudden increase in
control traffic and optimistic unchokes. Once the new
users have been integrated into the swarm and catch up to
the data production point in their consumption, existing
peers can exploit the swarm’s true capacity. Peers then
briefly download far faster than the data production rate,
since there is an excess of interesting blocks. Comparing
Figures 7(c) and 6(c) makes evident that the impact of
this dip-integration-surge behavior is dependent on the
number and arrival rate of new peers and the excess re-
sources present in the swarm. If there are sufficient re-
sources to feed both old and new users, it will not occur
at all. Otherwise, existing peers will experience a brief
drop in throughput. From a broadcaster’s perspective, it
is important to provide some form of admission control
in the tracker or require clients to set their buffer length
based on the minimum resource index expected during
playback.
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Figure 8: Impact of a high capacity peer connecting to a
resource constrained swarm

6.5 Integrating stabilizing resources
Although real-world measurements have indicated that
video broadcasts are usually over-provisioned, this is
certainly not always the case. Often broadcasts are ei-
ther temporarily or perpetually under-provisioned, and
additional resources are required. From an administra-
tive point of view, a straightforward solution is to sim-
ply attach nodes with large upload capacity to the swarm
when the resource index dips below a certain threshold.
Although we did not discuss it in Section 6.2, our ex-
periment designed to examine flash crowd behavior also
demonstrated our successful and rapid integration of new
resources when they were added to a system with some
excess capacity. The key observation is that stabilizing
resources are most effective if they are added well before
the resource index approaches 1. We have implemented
just such a threshold strategy in the LiveSwarms version
of the BitTorrent tracker. Because we maintain an up-
to-date calculation of the resource index, it is straight-
forward to determine when to add excess capacity to the
swarm.

The tendency of LiveSwarms to selectively fail peers
that cannot significantly contribute to their local peer set
during periods of resource constraint begs the question:
what if a high capacity peer joins the swarm when it is
already resource constrained? If peers preferentially up-
load only to those that can offer them interesting data
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in return, one might suspect that the system could never
recover from a resource constrained state even if high ca-
pacity peers joined and caused the resource index to rise.
Fortunately, this is not the case. Although the integration
of stabilizing resource is definitely hastened by introduc-
ing them well before the resource index drops below 1, it
is still possible to recover from such a situation. Recall
that, in order to discover peers that might provide greater
transfer rates than those a peer is currently exchanging
blocks with, the BitTorrent substrate optimistically un-
chokes peers in a round-robin fashion without regard to
their contribution. We see in Figure 8 that this is enough
to integrate a high capacity peer that joins during a period
of resource constraint. Initially, 30 peers with upload ca-
pacity less than the broadcast data rate connect and at-
tempt to support the broadcast. As expected, most peers
are in a state of perpetual rebuffering. After 180 seconds,
a high capacity peer joins and raises the resource index
to approximately 1.6. Although roughly a minute passes
before the new peer can obtain sufficient data to utilize its
upload capacity, eventually the swarm learns the value of
exchanging data with the new peer. Finally, after a brief
surge in download rate during which the existing peers
catch up to the current data production point, all peers
experience flawless playback.

6.6 NATs and firewalls

One of the most disruptive attributes of end hosts when
attempting to construct an efficient overlay network is
the presence of network address translation (NAT) and
firewalls. Because these devices prevent clients from re-
ceiving incoming connections, they can make construct-
ing an overlay difficult, as the capability for bidirectional
connectivity is often assumed. Fortunately, the network
structure of LiveSwarms is naturally robust to such con-
nectivity restrictions, although we conjecture that some
further improvements are possible.

We have duplicated several of our experiments with
connectivity restricted hosts that can form outgoing con-
nections but not receive incoming ones. Specifically, we
repeated the experiment described by Figures 1 and 2
with between 0% and 50% of the hosts having restricted
connectivity. We noted no difference in playback perfor-
mance beyond a slight (3 seconds on average) increase
in initial buffering until we reached between 40%-50%
nodes with connectivity restrictions. In this range, hosts
began experiencing moderate rebuffering, generally be-
tween 30 seconds to 1 minute collectively among all
swarm participants.

Our results in these duplicate experiments suggest sev-
eral observations regarding LiveSwarms performance in
the face of connectivity restrictions. First, BitTorrent
graphs are usually highly connected, with each peer

maintains a large set of local connections (usually 40 or
more in large swarms). This results in restricted hosts
usually being connected to several unrestricted hosts
with which they can exchange blocks. Second, although
the random graph structure provides some resilience
against the problem of capacity utilization for restricted
hosts, it does not solve the problem completely. During
resource constrained periods or if an overwhelming num-
ber of hosts are restricted, performance for those hosts
will suffer. Finally, our protocol design leaves significant
room for improvement. A more intelligent tracker might
be designed to return peers intelligently—attempting to
build up local neighborhoods with restricted and unre-
stricted peers in a capacity balance. This would require
no special changes to the LiveSwarms protocol, and we
leave its investigation as future work.

7 Discussion and future work

We have presented and evaluated a complete design for a
live broadcast transport layer. However, there are several
implications and potential weaknesses of our method that
we have not yet treated.

While our experiments were limited to broadcasts of
at most several hundred hosts, we believe LiveSwarms
has the capacity to scale to thousands of hosts. There
is some evidence to suggest this. First, the experiments
conducted in this paper were limited in size only by the
resources available to us in the Emulab testbed. We per-
formed no special tuning of our software when we made
the transition from 10 host development experiments to
the larger experiments presented in this paper. Second,
our modifications to the BitTorrent client were slight, and
BitTorrent has been successfully used to support file dis-
tribution for several thousand concurrent users.

Regarding scalability, one might suspect that the
tracker—a centralized resource—might eventually be-
come overwhelmed. Here again practical experience
suggests that this will not be a problem, as popular Bit-
Torrent trackers regularly coordinate multiple swarms
with thousands of users.

One might also expect that with a larger user popula-
tion, the number of peers for each node might be a much
smaller fraction of the size of the overlay, thereby mak-
ing it difficult to find the necessary blocks. However,
since the number of blocks a live swarm is distributing
is generally small, block availability is unlikely to be an
issue.

Another improvement to client performance regards
initial buffering. Clients may easily observe the rate at
which they fill their initial buffer and if it was substan-
tially faster than the data rate, they could begin playback
nearly immediately. This exploits the fact that when re-
questing old data for initial buffering, we explicitly re-

12



quest blocks in order. This has the potential to drasti-
cally decrease the time which new users wait to begin
playback provided there are sufficient resources.

The question of tracker scalability provides an exam-
ple of the benefits of relying on an existing and actively
developed system as a basis for data distribution. The
BitTorrent community has successfully implemented an
alternate tracker system based on the distributed hash ta-
ble system Kademlia [20]. Although we did not adapt
our tracker modifications to this facility, it serves as an
additional message passing layer than we inherit from
the BitTorrent code base.

Finally, we point out two related avenues of future
work. Our ability to quickly integrate additional re-
sources and monitor the resource index of the swarm
makes overprovisioning a broadcast a straightforward so-
lution to the challenging realities of churn. However, our
current strategy for monitoring the health of the swarm—
requiring clients to report upload capacity—is simplis-
tic. In practice, it is likely that users’ upload capacity
will vary over the course of a broadcast, and some users
may simply inaccurately report their capacity. Client
upload characteristics may also be intentionally misre-
ported as a means to achieve service without contribu-
tion or to undermine the broadcast. If users are certain
that a given broadcast will be overprovisioned at a par-
ticular level, regardless of client contribution, they might
limit their reported capacity intentionally. Although this
would not impact client performance, it may nonethe-
less prove to be a problem in practice, leaving open an
interesting question regarding a game theoretic analysis
of BitTorrent-style content distribution with performance
guarantees.

8 Conclusion

In this paper, we have presented the design, implemen-
tation, and evaluation of LiveSwarms, an end host mul-
ticast system using unstructured overlays for the de-
livery of streaming data with a small playback delay.
LiveSwarms is derived from the popular file download
system BitTorrent, enhanced to work for streaming data.
The resulting system is quite simple to implement and
understand. By leveraging BitTorrent, we hope to bring
the promise of end host multicast to a broad user com-
munity.

We demonstrate via trace-based experiments that
LiveSwarms can successfully support the real-time de-
livery demands of hundreds of hosts with heterogeneous
and asymmetric bandwidth capacities, and provided the
swarm has sufficient resources, it can support very high
churn rates, flash crowds, and sudden departures. Like
any real-time delivery system, deadlines can be missed
when the resources of the system are inadequate to meet

the demand, but we show that the system is self-healing,
able to discard a few resource poor nodes in order to keep
the rest of the swarm healthy, and able to meet their dead-
lines. We also show that LiveSwarms can detect when
deadlines are about to missed, proactively adding stabi-
lizing resources to preserve delivery guarantees.
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