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ABSTRACT: Previous work on radius of gyration and average crossing number has demonstrated that polymers
with fixed topology show a different scaling behavior with respect to these characteristics than polymers with
unrestricted topology. Using numerical simulations, we show here that the difference in the scaling behavior
between polymers with restricted and unrestricted topology also applies to the total curvature and total torsion.
For each knot type, the equilibrium length with respect to a given spatial characteristic is the number of edges
at which the value of the characteristic is the same as the average for all polygons. This number appears to be
correlated to physical properties of macromolecules, for example gel mobility as measured by the separation
between distinct knot types. We also find that, on average, closed polymers require slightly more total curvature
and slightly less total torsion than open polymers with the corresponding number of monomers.

1. Introduction

The simplest, and also the most fundamental, type of random
walk used to model macromolecules is composed of freely
jointed segments of equal length in which the individual
segments have no thickness. This type of random walk is
frequently used to model polymers at thermodynamic equilib-
rium under θ-conditions or in melt phase where polymer
segments that are not in a direct contact neither attract nor repel
each other.1-9 Linear chains without excluded volume are
believed to behave as linear polymers inθ-conditions and have
scaling exponentν ) 0.5. The same scaling behavior is observed
in the case of phantom polygons where the simulated segments
can freely pass through each other. However, when the simulated
polygons without thickness are required to preserve their original
topological knot type, one observes the scaling behavior of self-
avoiding walks with scaling exponentν ) 0.588.1-8 Interest-
ingly, the scaling profiles of such characteristics as the radius
of gyration or the average crossing number of random polygons
forming different knot types exhibit distinguishable profiles due
to the different correcting terms that depend upon the topol-
ogy.3,6,7 This phenomenon is believed to reflect the physical
behavior of cyclic polymers with different topologies under
conditions where polymer segments that are not in direct contact
neither attract nor repel each other. To understand better the
statistical mechanics of polymers under these specific conditions,
we use numerical simulations to determine the scaling profiles
for the total curVature and total torsion of random closed
polymers with fixed topology. The total curvature is a measure
of accumulated bending of a polygon10,11 and is computed by

summing the turning angle of the edge vectors at each of the
polygon’s vertices. The total torsion measures the amount a
polygon deviates from being planar. To compute the torsion
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Figure 1. KS statistic values forknPCRs vsn2 PCRs for total curvature
(top) and total torsion (bottom). Thex-axis is the factork, and they-axis
is the KS statistic value. The five sets of data points correspond to
different numbers of edges. The horizontal line is at 1.36, the statistic
value which provides evidence with 95% confidence. The connecting
lines are for visualization purposes only.
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angle at an edge, one determines the angle between the planes
determined by the given edge and the preceding edge and by
the given edge and the following edge. The total torsion is the
sum of the torsion angles over the edges of the polygon.

The total curvature and total torsion provide important
information about how much, and in what ways, the modeled
polymers turn in space. Thus, one expects these quantities to
be intimately connected with the statistical characteristics of
knotting and, therefore, relevant to the properties of macromol-
ecules. We find that the scaling profiles for each fixed nontrivial
knot type intersect the scaling profiles of phantom polygons
for both total curvature and total torsion. For polymers under
θ-conditions or in melt phase, the point of intersection defines
theequilibrium length6,7 of the given knot type with respect to
the given characteristic.

From a physical standpoint, the equilibrium length measures
the length of polymer at which releasing the topological restraint
(for a given knot type) results in no net gain or loss in the
average spatial measurement (here, either total curvature or total
torsion). Consider, for example, the total curvature of polymers
whose knot type is that of a trefoil. When the length is shorter
than the equilibrium length, releasing the topological constraint
will have a tendency to result in a polymer with smaller total
curvature. When the length is longer than the equilibrium length,
releasing the topological constraint will have a tendency to result
in a polymer with larger total curvature. The opposite is true
for total torsion (Figure 4). Grosberg et al.3,12,13introduced the
term overknotted and underknotted to refer to a polymer with
a fixed topology and chain length that is either shorter or longer,
respectively, than the equilibrium length for a given topology.
In the overknotted regime (chain size below the equilibrium
length) a polymer with a given knot type would have a tendency

to simplify its knot type upon a release from a topological
constraint while the opposite is the case in the underknotted
regime (chain size above the corresponding equilibrium length).
We will see that the equilibrium lengths with respect to total

Figure 2. KS statistic values forkn PCR hedgehog polygons vsn2

crankshaft rotation Monte Carlo polygons for total curvature (top) and
total torsion (bottom). Thex-axis is the factork, and they-axis is the
KS statistic value. The five sets of data points correspond to different
numbers of edges.

Figure 3. Scaling profiles for mean total curvature (top) and mean
total torsion (bottom).

Figure 4. Scaling profiles for the normalized mean total curvature
(top) and normalized mean total torsion (bottom). The phantom
polygons are the nearly horizontal set of points, and the unknotted
polygons are the points separated from the majority.
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curvature and total torsion are roughly equal for a fixed knot
type. In addition, we discover that, on average, random polygons
have slightly more total curvature and slightly less total torsion
than random open walks. Curiously, the amounts of excess and
deficit are approximately the same.

We characterize the probability profiles of prime knots with
up to six crossings and determine the chain length for which
the knot types reach their maximum occurrence (Figure 11).
We compare these chain lengths with the total curvature and
total torsion equilibrium lengths of the respective knot types.
The close correspondence between the values suggests that the
ratio of the entropy of a given knot to the entropy of all polygons
reaches its maximum at the chain length corresponding to the
equilibrium length of a given knot with respect to the total
curvature or total torsion.

2. Computations

We analyzed equilateral random polygons ranging from 50
edges to 500 edges by a step size of 10 edges. For each number
of edges, we generated 400 000 random polygons using the
hedgehog method14 as follows: To generate ann edge (where
n is even) closed knot, we samplen/2 edge vectors uniformly
on the unit sphere. We use the GNU Scientific Libraries (GSL)
function gsl_ran_dir_3d to generate the uniform vectors on the

unit sphere and the Mersenne Twister method due to Matsumoto
and Nishimura15 (which is initialized using gsl_rng_mt19937)
as our random number generator. We then add then/2 edge
vectors with opposite directions to our sample. Note that the
sum of the nown vectors is the zero vector. To create a polygon
from these vectors, one could simply shuffle the order of the
vectors and use these as the edge vectors of the polygon.
However, this method would constrain us in a low dimensional
subspace of the space of all equilateral polygons. This con-
strained subspace may have rather different properties and
statistics as compared to the entire space.

Table 1. Fitting Parameters for the Normalized Mean Total Curvature and Normalized Mean Total Torsion

total curvature total torsion

knot A B C A B C

phantom 1.189438 -1.200496
31 0.002529 0.123075 -3.64472 -0.001439 -0.064766 2.48945
41 0.002073 0.151607 -4.08389 0.000664 -0.142187 3.23765
51 -0.001514 0.280715 -5.46702 0.000371 -0.144244 3.43845
52 0.000942 0.210419 -4.95636 -0.000587 -0.116817 3.28896
61 -0.001221 0.291088 -5.8159 0.002414 -0.203556 3.94459
62 0.002142 0.212785 -5.54977 0.000679 -0.155995 3.69169
63 0.006956 0.059110 -4.37179 0.000397 -0.158986 3.77805

Figure 5. Normalized mean total curvature and summary curves from the MCMC analysis for the three, four, and five crossing knots.

Table 2. Equilibrium Lengths for Total Curvature and Total
Torsion and the Maximum Probability Lengths

total curvature total torsion maximum probability

knot
equilib
length (

equilib
length (

max prob
length (

31 226.34 4.44 229.40 2.23 235.46 2.47
41 241.27 6.14 245.36 4.67 247.09 2.75
51 264.85 9.60 279.00 7.94 265.53 8.05
52 275.22 7.85 276.01 5.49 261.20 5.90
61 286.94 16.52 291.72 10.02 275.99 9.24
62 301.06 13.90 302.56 8.93 276.21 8.12
63 289.13 18.15 307.02 10.31 284.48 7.88
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To accomplish a wider sampling, we use a process to break
the correlations between then/2 pairs of opposite vectors. We
choose two vectors, at random, from the sample and replace
them with the result of rotating the vectors by a random angle
about the axis determined by their sum. We call this procedure
a pairwise-crankshaft rotation, abbreviated as PCR. This leaves
the sum of the vectors constant but changes the directions of
the two implicated vectors. In our computations, we found that
3n random rotations provided a distribution of total curvatures
and total torsions that was consistent with those of data sets
generated with many more PCRs as well as with that provided
by means of other approaches to random equilateral polygon
generation. A brief outline of this analysis is found in the next
section.

We next determine the knot type of each of the polygons
using the HOMFLY polynomial16 program of Ewing and
Millett.17 The HOMFLY polynomial does not determine the knot
type per se, so we really determine the distribution of HOMFLY
polynomials of the random polygons. However, for the knot
types we analyze in this study, the HOMFLY polynomial is an
effective surrogate for the knot type. The associated indeter-

minacy is due to small classes of knots that will have little effect
on the statistics derived from this data.18

We then calculate the total curvature and total torsion for
each of the random polygons and update the file associated with
its HOMFLY polynomial to keep a running list of these
quantities. Knot probabilities and average values are then
computed for the knots 31, 41, 51, 52, 61, 62, and 63 and for the
entire knot population at each number of edges. Because the
true average spatial values for right- and left-handed versions
of a chiral knot will be the same, we have grouped them together
after checking that the differences in their equilibrium lengths
were small. These differences are due to statistical fluctuations,
providing an independent estimate of the error associated with
this method. In order to estimate the error intrinsic to the
calculation, we have undertaken a rigorous analysis using a
method that will be described in section 5. The computations
were completed on a cluster of 39 Pentium-4 2.8 GHz desktop
computers and took∼2 months of continuous run time.

3. The Hedgehog Method

The goal of this section is to describe our implementation of
the hedgehog algorithm in which we used 3 times the number
of edges worth of pairwise-crankshaft rotations (PCRs) to
generate the set of 400 000 random polygons. We will show
that, in fact, a surprisingly small number of PCRs are sufficient
to provide statistically robust data for the total curvature and
total torsion. This does not prove, however, that the full space
of polygons was sampled but, rather, shows that additional PCRs
do not provide statistically significantly different estimates of
the total curvature and total torsion.

The probability density function of the total curvature and
total torsion distributions for the space random equilateral
polygons is unknown. The question, then, was how to determine
whether our random polygon generation algorithm provided a
robust data set. To do so, we turned to the Kolmogorov-
Smirnov (KS) two-sample test19 which tests whether two sets
of observations are from the same (but unknown) distribution.
The KS test is a measurement on the cumulative distribution
functions (CDF) of the sample sets and relies on a valueDmn,
the maximum height difference between the CDFs of the two
sets of observations. When the value of the KS statistic is less
than 1.36, we can conclude, with 95% confidence, that the
observations do not come from different distributions.

We generated 100 000 polygons usingn, 2n, 3n, 4n, 5n, and
n2 PCRs for numbers of edgesn taking values 100, 200, 300,
400, and 500 edges. As a first test, we compared thekn PCR
samples for both total curvature and total torsion vs the samples
usingn2 PCRs. If there was a difference in usingO(n) vs O(n2)
to determine the total curvature and total torsion distributions,
then these comparisons should have shown some indication of
a difference.

The KS statistic values are shown in Figure 1. Note that all
of the KS statistic values are less than 1.36. This shows, at least
in the case of total curvature and total torsion, that usingn2

PCRs was no more effective than usingn PCRs in the hedgehog
algorithm.

As a second test, we compared the total curvature and total
torsion distributions using the hedgehog algorithm vs the
distributions from a standard Metropolis Monte Carlo algorithm
to generate random polygons. For all of the Monte Carlo
polygons, we started from a regularn-gon and used random
crankshaft rotations to determine a set of polygons. We
generated 100 000 polygons for the same set of edges. We used
10n2 crankshaft rotations to move away from the initial state (a

Figure 6. Normalized mean total curvature and summary curves from
the MCMC analysis for the six crossing knots.
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regularn-gon) and thenn2 crankshaft rotations between samples.
Again, we used the KS two-sample test. The results are shown
in Figure 2. The statistical properties of the Monte Carlo polygon
data agree with those of earlier studies.20 We have not attempted
to determine the minimal number of random crankshaft rotations
required to eliminate the correlations inherent in the initial state
since we employ the hedgehog method in this project.

One should expect∼5% of the KS statistic values to lie above
1.36 when the two samples come from the same distribution,
so the two values lying above 1.36 in Figure 2 are not a concern.
Overall, we see strong evidence that evenn PCRs was enough
to generate a robust sampling of the total curvature and total
torsion of random polygons.

We have, thus, demonstrated that our implementation of the
hedgehog algorithm for generating random equilateral polygons
provides a statistically robust data set.

4. Scaling of Total Curvature and Total Torsion

An elementary analysis suggests that both the total curvature
and total torsion should scale linearly with respect to the number
of edges in the polygon. Indeed, upon inspection, the scaling
profiles for the knot types and the phantom polygons appear to
be linear (see Figure 3). In a random walk withn + 2 vertices
(i.e., n freely bending joints), the mean total curvature will be
(π/2)n since each joint, on average, will contributeπ/2 worth
of bending. This suggests that the slope of the linear scaling
for the two quantities likely has slopeπ/2. To get a sense of
the fine structure of this scaling, we subtractedπn/2 from the
total curvature. These results, shown in Figure 4, clearly exhibit
a systematic structure that differentiates between the various
distinct knot types.

After this normalization, one sees that the fine structure of
the scaling profile of the phantom polygons is constant. For
the two quantities, we fit a curve of the formy ) A to the
normalized scaling profiles of the phantom polygons.

This is equivalent to using a scaling profile ofA + πn/2 on the
original data.

The individual knot types, however, scale differently. In
analogy to the work in Orlandini et al.,21 we employ a linear
growth rate for the polygons with fixed topology and multiply
by a correction termA′ + B/xx + C/x. In other words, we use
a scaling profile ofx(A′ + B/xx + C/x) whereA′, B, andC are
parameters to be fit. After normalizing, we have a scaling
function of the formAx + Bxx + C where theA value here is
the difference of theA′ above andπ/2. Because of the similarity
of the structure of the data described in the work of Orlandini
et al. and that in this research, the proposed fitting function is
effective despite the possible differences between self-avoiding
polygons and random equilateral polygons. As we have seen
earlier,6,7 there is a similarity between polygons with fixed
topology and no excluded volume, they have a scaling exponent
ν ) 0.588, which is also the scaling exponent of self-avoiding
walks attributed to the influence of excluded volume.

Once the scaling has been established, we determine the
equilibrium length of the knot types with respect to total
curvature and total torsion. We use a Monte Carlo Markov chain
model from Bayesian statistics to estimate the likely values of
A, B, and C for each knot type with respect to each of total
curvature and total torsion, to determine the equilibrium lengths,
and to determine the likely accuracy of our calculations. This
method and our implementation are briefly described in the next
section.

5. Monte Carlo Markov Chain Method

We describe the algorithm for determining the scaling
functions, giving the equilibrium length numbers, and for
providing error bars for the normalized data as well as our
estimates. The explanation below concerns individual knot types.
For the phantom polygons, the fitting function is simplyg(x)
) A and the algorithm works analogously.

Figure 7. Normalized mean total torsion and summary curves from the MCMC analysis for the three, four, and five crossing knots.
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To estimate the parametersA, B, andC of the mean function
g(x) ) A + B/xx + C/x , we implement the Metropolis
Markov Chain Monte Carlo (MCMC) sampling method (for
more details, see e.g. refs 22 and 23).

A key facet of the analysis is the use, for the knot types, of
g(x) (i.e., (A + B/xx + C/x) which comes from ref 21 where it
was used for the scaling of the radius of gyration of self-avoiding
phantom polygons. The scaling functions for self-avoiding
polygons are typically used also for modeling polymers with
topological constraints.1 For phantom polygons, the squared
radius of gyration scales as a linear function as does, visibly,
the total curvature and total torsion in the same population. For
individual knot types, the scaling exponent is 1.176.6 The
method begins with initial parametersA, B, andC. It then uses
the algorithm to propose new values of the parameters and, with
some probability, accepts the new value and repeats the process.
These values can then be used to estimate a “g”, and again
repeating the procedure, these “g’s” are used to produce a final
average estimated “g”.

We use gnuplot24 to determine initial values ofA, B, andC.
A delicate aspect of this method was to identify proposal
distributions for these parameters which would quickly eliminate
the autocorrelation within the sequences ofA, B, andC values.
This was accomplished only after significant ad hoc experi-
mentation in choosing a percent of, for example,A to express
the standard deviation of the distribution of proposal values.
Ultimately, we found proposal distributions which resulted in
lags of 300 (i.e., in all three parameter values losing the
autocorrelation in 300 steps of the algorithm). Thus, we required
300 steps of the algorithm to determine one proposed fitting
curve. In the end, we have 1000 potential fitting curves for each
knot type in addition to the phantom polygons and for each of
total curvature and total torsion.

In Figures 5 and 6, we show the summary fitting graphs for
each of the knot types with respect to total curvature. In
particular, the points are the mean total curvature values at each
number of edges as well as for the phantom polygons. The
upper, middle, and lower curves are computed as follows. At
each number of edges (here we use a step size of one), we
compute the value of the fitting graph for each of the 1000
curves. The middle graph is the mean of the 1000 values at
each number of edges. We then order those values. The upper
and lower curves are the top and bottom values one obtains
after removing the largest and smallest 2.5% of the values. The
summary curves give the final prediction for the normalized
scaling function with 95% confidence.

In Figures 7 and 8, we apply an analogous analysis for total
torsion. To provide the reader with one set of fitting parameters

Figure 8. Normalized mean total torsion and summary curves from
the MCMC analysis for the six crossing knots.

Figure 9. Equilibrium lengths for total curvature and total torsion and
their error bars.

Figure 10. Electrophoretic separation from the position of unknots to
specific knot types vs the average total curvature and total torsion
equilibrium lengths of the corresponding knot type. The first and second
bands are unknotted and linear segments, respectively. The gel image
was kindly provided by N. Crisona (UC Berkeley).
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which provide a good fit for the data, we fit a curve of the
form Ax + Bxx + C to the middle graph. These parameter
values are reported in Table 1. They are almost identical to what
one gets by averaging the 1000 differentA, B, andC values.

To determine error bars for the equilibrium length of a given
knot type, we computed the crossing point between the potential
fitting curves of the knot types and the phantom polygons.
Specifically, we computed the crossing point between the first
fitting curve for the knot type and the first fitting curve for the
phantom polygons. Then we do the same for the second from
each list, etc. This process yields a set of 1000 potential crossing
points (i.e., equilibrium lengths). We then order the values and
remove the first 2.5% and last 2.5% of those (i.e., 25 of each)
to obtain 95% confidence intervals for the crossing point (i.e.,
equilibrium length). We report the mean equilibrium length from
this last as well as the error bars for the 95% confidence interval

in Table 2. A graphical rendition of this information is shown
in Figure 9.

6. Analysis

The calculation of the total curvature and total torsion
equilibrium lengths (Table 2) shows that the two values are
essentially equal, up to the accuracy of the statistical estimation
of their values. As a consequence, these two independent
measure of spatial turning and twisting capture, on average, the
same characteristics of the spatial equilateral polygons. Together,
the total curvature and total torsion equilibrium lengths capture
important aspects of the evolution of the average spatial structure
of knotted equilateral polygons. As a test of the significance of
this evolutionary characteristic, we consider the correlation

Figure 11. (a-c) Probability profiles for the analyzed knots. (d) Normalized fitting graphs for the probability profiles.

Figure 12. Comparison of the average of the total curvature and total
torsion equilibrium lengths and the maximum probability lengths (LMP)
for the indicated knot types.

Figure 13. Equilibrium lengths for radius of gyration (RGN),6 average
crossing number (ACN),7 total curvature (TC), total torsion (TT), and
the maximum probability lengths (LMP). Note that in ref 6 the six
crossing knots were grouped together, so we report the common value.
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between them and the observed gel separation of the various
knot types. Such correlations have already been observed with
the average crossing number, but this is the first consideration
of the influence of total curvature and total torsion on gel
mobility of knotted macromolecules. In Figure 10, one sees
evidence of a linear relationship, at least for the simplest knotting
of polygons. Since the speed of gel migration of DNA molecules
with the same chain length increases with their compaction,25

one can conclude that polymers with the same chain length
which form different knot types have similar ratios of their
overall compaction as the corresponding ratios of the equilibrium
lengths for the respective knot types.

An MCMC analysis of the probability profiles of the
individual types of knotted polygons, similar to that done for
total curvature and total torsion, provides estimates of the lengths
at which the different knot types shown in Figure 11 attain their
maximum probability. These also correlate with the total
curvature/total torsion equilibrium lengths as shown in
Figure 12. The total curvature and total torsion are intimately
connected to knotting at the geometric level. This correlation
suggests that the ratio of the entropy of a given knot to the
entropy of all polygons reaches its maximum at the chain length
corresponding to the equilibrium length of a given knot with
respect to the total curvature or total torsion.

We have observed that the normalized average total curvature
and total torsion of the phantom polygons appears to be constant,
approximately 1.2 and-1.2, respectively. A simple estimate
derived from the inner product of the sum of the edge vectors26

suggests an approximation of 1.0 for the excess total curvature.
The case of the total torsion and the search for more accurate
estimates remains an interesting research question.

7. Conclusions

We have calculated the equilibrium lengths for equilateral
random polygons with respect to the total curvature and total
torsion of the configurations by showing that the differences in
restricted and unrestricted topology already observed for average
crossing number and radius of gyration hold for these quantities
as well. We note that the total curvature and total torsion
equilibrium lengths appear more closely related to the maximum
probability lengths than, for example, the average crossing
number equilibrium length. The total curvature and total torsion
equilibrium lengths are comparable to these and provide both a
strong correlation with respect to observed physical properties,
e.g., the gel separation, and the length of maximum probability.
While both the total curvature and total torsion scale, as
predicted, linearly as a function of the number of edges in the
configuration, there appears to be an excess/deficit of that same
magnitude, 1.2, which has not been entirely explained theoreti-
cally and which would be associated with the closure of the
polygons.
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