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ABSTRACT: Previous work on radius of gyration and average crossing number has demonstrated that polymers
with fixed topology show a different scaling behavior with respect to these characteristics than polymers with
unrestricted topology. Using numerical simulations, we show here that the difference in the scaling behavior
between polymers with restricted and unrestricted topology also applies to the total curvature and total torsion.
For each knot type, the equilibrium length with respect to a given spatial characteristic is the number of edges
at which the value of the characteristic is the same as the average for all polygons. This number appears to be
correlated to physical properties of macromolecules, for example gel mobility as measured by the separation
between distinct knot types. We also find that, on average, closed polymers require slightly more total curvature
and slightly less total torsion than open polymers with the corresponding number of monomers.

; 25 : ‘
1. Introduction 100 edges —»—

The simplest, and also the most fundamental, type of random 2D e Total Curvature
walk used to model macromolecules is composed of freely 21 400 edges —s—
jointed segments of equal length in which the individual 500 edges —o—
segments have no thickness. This type of random walk is
frequently used to model polymers at thermodynamic equilib-
rium under #-conditions or in melt phase where polymer
segments that are not in a direct contact neither attract nor repel
each othet™® Linear chains without excluded volume are 05 |
believed to behave as linear polymergieonditions and have
scaling exponent = 0.5. The same scaling behavior is observed 0 , ‘ . . .
in the case of phantom polygons where the simulated segments 1 2 3 4 5
can freely pass through each other. However, when the simulated PCR Factor
polygons without thickness are required to preserve their original
topological knot type, one observes the scaling behavior of self-
avoiding walks with scaling exponemt= 0.5881~8 Interest- 200 233:: e Total Torsion
ingly, the scaling profiles of such characteristics as the radius 2| 400 edges —m—

. . 500 edges —o—

of gyration or the average crossing number of random polygons
forming different knot types exhibit distinguishable profiles due
to the different correcting terms that depend upon the topol-
ogy 287 This phenomenon is believed to reflect the physical
behavior of cyclic polymers with different topologies under
conditions where polymer segments that are not in direct contact 05 | ]
neither attract nor repel each other. To understand better the
statistical mechanics of polymers under these specific conditions, 0 . . . ‘ ‘
we use numerical simulations to determine the scaling profiles 1 2 3 4 5
for the total curvature and total torsion of random closed PCR Factor
polymers with fixed topology. The total curvature is a measure Figure 1. KS statistic values fokn PCRs va2 PCRs for total curvature

of accumulated bending of a polyg8itand is computed by  (top) and total torsion (bottom). Theaxis is the factok, and they-axis
is the KS statistic value. The five sets of data points correspond to

different numbers of edges. The horizontal line is at 1.36, the statistic

15 ¢
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Figure 2. KS statistic values fokn PCR hedgehog polygons vé
crankshaft rotation Monte Carlo polygons for total curvature (top) and
total torsion (bottom). The-axis is the factok, and they-axis is the

KS statistic value. The five sets of data points correspond to different
numbers of edges.

angle at an edge, one determines the angle between the planes
determined by the given edge and the preceding edge and by

the given edge and the following edge. The total torsion is the

sum of the torsion angles over the edges of the polygon.
The total curvature and total torsion provide important

information about how much, and in what ways, the modeled

polymers turn in space. Thus, one expects these quantities to

be intimately connected with the statistical characteristics of
knotting and, therefore, relevant to the properties of macromol-
ecules. We find that the scaling profiles for each fixed nontrivial
knot type intersect the scaling profiles of phantom polygons
for both total curvature and total torsion. For polymers under
0-conditions or in melt phase, the point of intersection defines
the equilibrium length” of the given knot type with respect to
the given characteristic.

From a physical standpoint, the equilibrium length measures
the length of polymer at which releasing the topological restraint
(for a given knot type) results in no net gain or loss in the

average spatial measurement (here, either total curvature or total

torsion). Consider, for example, the total curvature of polymers
whose knot type is that of a trefoil. When the length is shorter
than the equilibrium length, releasing the topological constraint
will have a tendency to result in a polymer with smaller total

curvature. When the length is longer than the equilibrium length,
releasing the topological constraint will have a tendency to result

for total torsion (Figure 4). Grosberg et introduced the
term overknotted and underknotted to refer to a polymer with
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Figure 3. Scaling profiles for mean total curvature (top) and mean
total torsion (bottom).
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Figure 4. Scaling profiles for the normalized mean total curvature
. " 7 (top) and normalized mean total torsion (bottom). The phantom
in a polymer with larger total curvature. The opposite is true polygons are the nearly horizontal set of points, and the unknotted

polygons are the points separated from the majority.

a fixed topology and chain length that is either shorter or longer, to simplify its knot type upon a release from a topological
respectively, than the equilibrium length for a given topology. constraint while the opposite is the case in the underknotted
In the overknotted regime (chain size below the equilibrium regime (chain size above the corresponding equilibrium length).
length) a polymer with a given knot type would have a tendency We will see that the equilibrium lengths with respect to total
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Table 1. Fitting Parameters for the Normalized Mean Total Curvature and Normalized Mean Total Torsion

total curvature total torsion
knot A B C A B C
phantom 1.189438 —1.200496
3 0.002529 0.123075 —3.64472 —0.001439 —0.064766 2.48945
44 0.002073 0.151607 —4.08389 0.000664 —0.142187 3.23765
51 —0.001514 0.280715 —5.46702 0.000371 —0.144244 3.43845
5; 0.000942 0.210419 —4.95636 —0.000587 —0.116817 3.28896
61 —0.001221 0.291088 —5.8159 0.002414 —0.203556 3.94459
62 0.002142 0.212785 —5.54977 0.000679 —0.155995 3.69169
63 0.006956 0.059110 —4.37179 0.000397 —0.158986 3.77805

curvature and total torsion are roughly equal for a fixed knot Table 2. Equilibrium Lengths for Total Curvature and Total
type. In addition, we discover that, on average, random polygons Torsion and the Maximum Probability Lengths

have slightly more total curvature and slightly less total torsion total curvature total torsion maximum probability
than random open walks. Curiously, the amounts of excess and equilib equilib max prob
deficit are approximately the same. knot  length + length + length +
We characterize the probability profiles of prime knots with 3, 226.34 444 22940 223 235.46 2.47
up to six crossings and determine the chain length for which 4. 241.27  6.14 24536  4.67 247.09 2.75
the knot types reach their maximum occurrence (Figure 11). 5 264.85  9.60 279.00  7.94 265.53 8.05
We compare the§e _chain lengths with the totql curvature and gi ggg:gi 12_23 gi'_% 1%.‘(1)% 22‘;15'_33 ‘3‘_391
total torsion equilibrium lengths of the respective knot types. 6,  301.06 13.90 30256 8.93 276.21 8.12
The close correspondence between the values suggests that thes;  289.13 18.15 307.02 10.31 284.48 7.88

ratio of the entropy of a given knot to the entropy of all polygons
reaches its maximum at the chain length corresponding to the
equilibrium length of a given knot with respect to the total
curvature or total torsion.

unit sphere and the Mersenne Twister method due to Matsumoto
and Nishimur# (which is initialized using gsl_rng_mt19937)
as our random number generator. We then addnfBeedge

2. Computations vectors with opposite directions to our sample. Note that the

We analyzed equilateral random polygons ranging from 50 Sum of the nown vectors is the zero vector. To create a polygon
edges to 500 edges by a step size of 10 edges. For each numbdfom these vectors, one could simply shuffle the order of the
of edges, we generated 400 000 random polygons using thevectors and use these as the edge vectors of the polygon.
hedgehog methdéias follows: To generate amedge (where However, this method would constrain us in a low dimensional
n is even) closed knot, we sampi edge vectors uniformly ~ subspace of the space of all equilateral polygons. This con-
on the unit sphere. We use the GNU Scientific Libraries (GSL) strained subspace may have rather different properties and
function gsl_ran_dir_3d to generate the uniform vectors on the statistics as compared to the entire space.
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Figure 5. Normalized mean total curvature and summary curves from the MCMC analysis for the three, four, and five crossing knots.
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3 —— minacy is due to small classes of knots that will have little effect
on the statistics derived from this dafa.

We then calculate the total curvature and total torsion for
each of the random polygons and update the file associated with
its HOMFLY polynomial to keep a running list of these
guantities. Knot probabilities and average values are then
computed for the knots; 344, 51, 5, 61, 67, and 6 and for the
entire knot population at each number of edges. Because the
true average spatial values for right- and left-handed versions
of a chiral knot will be the same, we have grouped them together
0 L after checking that the differences in their equilibrium lengths

50 100 150 200 250 300 350 400 450 500 were small. These differences are due to statistical fluctuations,
Number of Edges providing an independent estimate of the error associated with
this method. In order to estimate the error intrinsic to the
3 L calculation, we have undertaken a rigorous analysis using a
method that will be described in section 5. The computations
were completed on a cluster of 39 Pentium-4 2.8 GHz desktop
computers and took-2 months of continuous run time.

Total Curvature

3. The Hedgehog Method

The goal of this section is to describe our implementation of
the hedgehog algorithm in which we used 3 times the number
of edges worth of pairwise-crankshaft rotations (PCRs) to
generate the set of 400 000 random polygons. We will show
0 —_— that, in fact, a surprisingly small number of PCRs are sufficient

50100 150 200 250 5300 1350400450 500 to provide statistically robust data for the total curvature and
Number of Edges total torsion. This does not prove, however, that the full space
of polygons was sampled but, rather, shows that additional PCRs
do not provide statistically significantly different estimates of
the total curvature and total torsion.

The probability density function of the total curvature and
total torsion distributions for the space random equilateral
polygons is unknown. The question, then, was how to determine
whether our random polygon generation algorithm provided a
robust data set. To do so, we turned to the Kolmogerov
Smirnov (KS) two-sample testwhich tests whether two sets
of observations are from the same (but unknown) distribution.
The KS test is a measurement on the cumulative distribution
050 160 1;50 260 2;50 360 3;50 4'00 4'50 500 function_s (CDF) Qf the.sample sets and relies on a valyg

Number of Edges the maximum hqght difference between the CDFs pf .th.e two

i ) sets of observations. When the value of the KS statistic is less
Figure 6. Normalized mean total curvature and summary curves from than 1.36. we can conclude. with 95% confidence. that the
the MCMC analysis for the six crossing knots. ! ’ . ]

observations do not come from different distributions.

To accomplish a wider sampling, we use a process to break _We generated 100 000 polygons usmgn, 3n, 4n, 5n, and
the correlations between th#2 pairs of opposite vectors. We "2 PCRs for numbers of edgestaking values 100, 200, 300,
choose two vectors, at random, from the sample and replace#00, and 500 edges. As a first test, we comparecktheCR
them with the result of rotating the vectors by a random angle samples for both total curvature and total torsion vs the samples
about the axis determined by their sum. We call this procedure Usingn® PCRs. If there was a difference in usi@gn) vs O(n?)
a pairwise_crankshaﬁ: rotation’ abbreviated as PCR. This |eavest0 determine the total curvature and total torsion dIStrIbutIOI’]S,
the sum of the vectors constant but changes the directions ofthen these comparisons should have shown some indication of
the two implicated vectors. In our computations, we found that @ difference.
3n random rotations provided a distribution of total curvatures ~ The KS statistic values are shown in Figure 1. Note that all
and total torsions that was consistent with those of data setsof the KS statistic values are less than 1.36. This shows, at least
generated with many more PCRs as well as with that provided in the case of total curvature and total torsion, that usifig
by means of other approaches to random equilateral polygonPCRs was no more effective than usmBCRs in the hedgehog
generation. A brief outline of this analysis is found in the next algorithm.
section. As a second test, we compared the total curvature and total
We next determine the knot type of each of the polygons torsion distributions using the hedgehog algorithm vs the
using the HOMFLY polynomidf program of Ewing and distributions from a standard Metropolis Monte Carlo algorithm
Millett.1” The HOMFLY polynomial does not determine the knot to generate random polygons. For all of the Monte Carlo
type per se, so we really determine the distribution of HOMFLY polygons, we started from a regulargon and used random
polynomials of the random polygons. However, for the knot crankshaft rotations to determine a set of polygons. We
types we analyze in this study, the HOMFLY polynomial is an generated 100 000 polygons for the same set of edges. We used
effective surrogate for the knot type. The associated indeter- 10n? crankshaft rotations to move away from the initial state (a

Total Curvature

Total Curvature
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Figure 7. Normalized mean total torsion and summary curves from the MCMC analysis for the three, four, and five crossing knots.

regular-gon) and them? crankshaft rotations between samples. This is equivalent to using a scaling profile At zn/2 on the
Again, we used the KS two-sample test. The results are shownoriginal data.
in Figure 2. The statistical properties of the Monte Carlo polygon  The individual knot types, however, scale differently. In
data agree with those of earlier studie§Ve have not attempted  analogy to the work in Orlandini et &!,we employ a linear
to determine the minimal number of random crankshaft rotations growth rate for the polygons with fixed topology and multiply
required to eliminate the correlations inherent in the initial state by a correction tern\' + B/v/X + C/x. In other words, we use
since we employ the hedgehog method in this project. a scaling profile ok(A' + B/v/x + C/x) whereA', B, andC are
One should eXpeCt’S% of the KS statistic values to lie above parameters to be fit. After norma”zing, we have a Sca"ng
1.36 when the two samples come from the same distribution, function of the formAx + Bv/X + C where theA value here is
so the two values lying above 1.36 in Figure 2 are not a concem. ihe gifference of thé\' above andr/2. Because of the similarity
Overall, we see strong evidence that emeACRs was enough ¢ the structure of the data described in the work of Orlandini
to generate a robust sampling of the total curvature and total g 5 and that in this research, the proposed fitting function is
torsion of random polygons. _ _ effective despite the possible differences between self-avoiding
We have, thus, demonstrated that our implementation of the polygons and random equilateral polygons. As we have seen
hedgehog algorithm for generating random equilateral polygonsear”ergsj there is a similarity between polygons with fixed

provides a statistically robust data set. topology and no excluded volume, they have a scaling exponent
. . v = 0.588, which is also the scaling exponent of self-avoiding
4. Scaling of Total Curvature and Total Torsion walks attributed to the influence of excluded volume.

An elementary analysis suggests that both the total curvature Once the scaling has been established, we determine the
and total torsion should scale linearly with respect to the number equilibrium length of the knot types with respect to total
of edges in the polygon. Indeed, upon inspection, the scaling curvature and total torsion. We use a Monte Carlo Markov chain
profiles for the knot types and the phantom polygons appear to model from Bayesian statistics to estimate the likely values of
be linear (see Figure 3). In a random walk with- 2 vertices A, B, and C for each knot type with respect to each of total
(i.e., n freely bending joints), the mean total curvature will be curvature and total torsion, to determine the equilibrium lengths,
(7r/2)n since each joint, on average, will contributé? worth and to determine the likely accuracy of our calculations. This
of bending. This suggests that the slope of the linear scaling method and our implementation are briefly described in the next
for the two quantities likely has slope/2. To get a sense of  section.
the fine structure of this scaling, we subtracted2 from the
total curvature. These results, shown in Figure 4, clearly exhibit 5. Monte Carlo Markov Chain Method
a systematic structure that differentiates between the various We describe the algorithm for determining the scaling
distinct knot types. functions, giving the equilibrium length numbers, and for

After this normalization, one sees that the fine structure of providing error bars for the normalized data as well as our
the scaling profile of the phantom polygons is constant. For estimates. The explanation below concerns individual knot types.
the two quantities, we fit a curve of the forjn= A to the For the phantom polygons, the fitting function is simx)
normalized scaling profiles of the phantom polygons. = A and the algorithm works analogously.
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Figure 8. Normalized mean total torsion and summary curves from
the MCMC analysis for the six crossing knots.

To estimate the parameteksB, andC of the mean function
gx) = A + B/V/X + CIx , we implement the Metropolis
Markov Chain Monte Carlo (MCMC) sampling method (for
more details, see e.g. refs 22 and 23).

A key facet of the analysis is the use, for the knot types, of
g(X) (i.e., (A + B/v/X + CIX) which comes from ref 21 where it
was used for the scaling of the radius of gyration of self-avoiding
phantom polygons. The scaling functions for self-avoiding
polygons are typically used also for modeling polymers with
topological constraints.For phantom polygons, the squared
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Figure 10. Electrophoretic separation from the position of unknots to
specific knot types vs the average total curvature and total torsion
equilibrium lengths of the corresponding knot type. The first and second
bands are unknotted and linear segments, respectively. The gel image
was kindly provided by N. Crisona (UC Berkeley).

We use gnuplét to determine initial values oA, B, andC.

A delicate aspect of this method was to identify proposal
distributions for these parameters which would quickly eliminate
the autocorrelation within the sequence®pB, andC values.
This was accomplished only after significant ad hoc experi-
mentation in choosing a percent of, for exam@ap express
the standard deviation of the distribution of proposal values.
Ultimately, we found proposal distributions which resulted in
lags of 300 (i.e., in all three parameter values losing the
autocorrelation in 300 steps of the algorithm). Thus, we required
300 steps of the algorithm to determine one proposed fitting
curve. In the end, we have 1000 potential fitting curves for each
knot type in addition to the phantom polygons and for each of
total curvature and total torsion.

In Figures 5 and 6, we show the summary fitting graphs for
each of the knot types with respect to total curvature. In
particular, the points are the mean total curvature values at each
number of edges as well as for the phantom polygons. The
upper, middle, and lower curves are computed as follows. At
each number of edges (here we use a step size of one), we

radius of gyration scales as a linear function as does, visibly, compute the value of the fitting graph for each of the 1000
the total curvature and total torsion in the same population. For curves. The middle graph is the mean of the 1000 values at

individual knot types, the scaling exponent is 1.£7Ghe
method begins with initial parametefs B, andC. It then uses

each number of edges. We then order those values. The upper
and lower curves are the top and bottom values one obtains

the algorithm to propose new values of the parameters and, withafter removing the largest and smallest 2.5% of the values. The
some probability, accepts the new value and repeats the processummary curves give the final prediction for the normalized

These values can then be used to estimatg’adnd again
repeating the procedure, theggs” are used to produce a final
average estimatedy”.

scaling function with 95% confidence.
In Figures 7 and 8, we apply an analogous analysis for total
torsion. To provide the reader with one set of fitting parameters
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Figure 12. Comparison of the average of the total curvature and total
torsion equilibrium lengths and the maximum probability lengths (LMP)
for the indicated knot types.

Figure 13. Equilibrium lengths for radius of gyration (RGRaverage
crossing number (ACN)total curvature (TC), total torsion (TT), and
the maximum probability lengths (LMP). Note that in ref 6 the six

which provide a good fit for the data, we fit a curve of the Crossing knots were grouped together, so we report the common value.

form Ax + Bv/x + C to the middle graph. These parameter
values are reported in Table 1. They are almost identical to what
one gets by averaging the 1000 differégtB, andC values.

To determine error bars for the equilibrium length of a given
knot type, we computed the crossing point between the potential
fitting curves of the knot types and the phantom polygons. The calculation of the total curvature and total torsion
Specifically, we computed the crossing point between the first equilibrium lengths (Table 2) shows that the two values are
fitting curve for the knot type and the first fitting curve for the essentially equal, up to the accuracy of the statistical estimation
phantom polygons. Then we do the same for the second fromof their values. As a consequence, these two independent
each list, etc. This process yields a set of 1000 potential crossingmeasure of spatial turning and twisting capture, on average, the
points (i.e., equilibrium lengths). We then order the values and same characteristics of the spatial equilateral polygons. Together,
remove the first 2.5% and last 2.5% of those (i.e., 25 of each) the total curvature and total torsion equilibrium lengths capture
to obtain 95% confidence intervals for the crossing point (i.e., important aspects of the evolution of the average spatial structure
equilibrium length). We report the mean equilibrium length from of knotted equilateral polygons. As a test of the significance of
this last as well as the error bars for the 95% confidence interval this evolutionary characteristic, we consider the correlation

in Table 2. A graphical rendition of this information is shown
in Figure 9.

6. Analysis
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