
tsnnls : A solver for large sparse least squares problems
with non-negative variables

Jason Cantarella∗

Department of Mathematics, University of Georgia, Athens, GA 30602

Michael Piatek†

Department of Mathematics and Computer Science,
Duquesne University, Pittsburgh, PA 15282

The solution of large, sparse constrained least-squares problems is a staple in scientific
and engineering applications. However, currently available codes for such problems are
proprietary or based onMATLAB. We announce a freely available C implementation of the
fast block pivoting algorithm of Portugal, Judice, and Vicente. Our version is several times
faster than Matstoms’MATLABimplementation of the same algorithm. Further, our code
matches the accuracy ofMATLAB’s built-in lsqnonneg function.

Keywords: Non-negative least-squares problems, NNLS, sparse Cholesky factorization, sparse ma-

trices, LSQR

1. INTRODUCTION

The authors were recently faced with the challenge of finding a fast solver for the sparse non-
negative least-squares problem (NNLS) to embed in a much larger scientific application. The
problem is given by

min
x

1

2
||Ax− b||22 with x ≥ 0 (1)

whereA is anm × n matrix, x ∈ Rn, b ∈ Rm andm > n, and we assumeA has full column
rank. This is a standard problem in numerical linear algebra ([1, 4]) which is handled by a number
of commercial libraries ([2, 9, 10]) and by theMATLAB-based Sparse Matrix Toolbox of [5].
While these methods work well, their users must incur the overhead of a large math package or
the expense and license restrictions of commercial libraries. There does not seem to be a freely
available solver for this problem without these disadvantages. This motivated the development of
tsnnls , a lightweight ANSI C implementation of the block principal pivoting algorithm of [7]
which matches the accuracy of theMATLAB-based codes and is considerably faster. The code can
be obtained athttp://www.cs.duq.edu/˜piatek/tsnnls/ or http://ada.math.
uga.edu/research/software/tsnnls/ . Users may redistribute the library under the
terms of the GNU GPL.

∗Email: cantarel@math.uga.edu
†Email: piatek@mathcs.duq.edu

http://www.cs.duq.edu/~piatek/tsnnls/
http://ada.math.uga.edu/research/software/tsnnls/
http://ada.math.uga.edu/research/software/tsnnls/
mailto:cantarel@math.uga.edu
mailto:piatek@mathcs.duq.edu

tsnnls : A sparse nonnegative least squares solver 2

2. ALGORITHMS

The following is a summary of our main algorithm as described in [7]. The fundamental obser-
vation underlying the block principal pivoting algorithm is that Equation 1 can be rewritten (using
the definition of theL2 norm) as a quadratic program:

min
x
−(AT b)T x +

1

2
xT ATAx, with x ≥ 0. (2)

SinceA has full rank,ATA is positive-definite, and this is a convex program which can be rewritten
as a linear complementarity problem:

y = ATAx− AT b, y ≥ 0, x ≥ 0, 〈x, y〉 = 0. (3)

The last condition means that the nonzero entries ofx andy occupy complementary variables: any
given position must vanish inx or y (or both). In fact, the nonzero entries iny represent variables
in x which would decrease the residualAx − b still further by becoming negative, and so are set
to zero in the solution to the constrained problem.

Suppose we have a division of then indices of the variables inx into complementary setsF
andG, and letxF andyG denote pairs of vectors with the indices of their nonzero entries in these
sets. Then we say that the pair(xF , yG) is acomplementary basic solutionof Equation 3 ifxF is
a solution of the unconstrained least squares problem

min
xF∈R|F |

1

2
||AF xF − b||22, (4)

whereAF is formed fromA by selecting the columns indexed byF , andyG is obtained by

yG = AT
G (AF xF − b) . (5)

If xF ≥ 0 andyG ≥ 0, then the solution isfeasible. Otherwise it isinfeasible, and we refer to
the negative entries ofxF andyG as infeasible variables. The idea of the algorithm is to pro-
ceed through infeasible complementary basic solutions of (3) to the unique feasible solution by
exchanging infeasible variables betweenF andG and updatingxF andyG by (4) and (5). To
minimize the number of solutions of the least-squares problem in (4), it is desirable to exchange
variables in large groups if possible. In rare cases, this may cause the algorithm to cycle. There-
fore, we fall back on exchanging variables one at a time if no progress is made for a certain number
of iterations with the larger exchanges.

The original block-principal pivoting algorithm works very well for what we call “numerically
nondegenerate” problems, where each of the variables inF andG have values distinguishable
from zero by the unconstrained solver in the feasible solution. If this is not the case, a variable with
solution value close to zero may be passed back and forth betweenF andG, each time reported as
slightly negative due to error in the unconstrained solver. We work around this problem by zeroing
variables in the unconstrained solution that are within10−12 of zero. Although this strategy works
well in practice, we have not developed its theoretical basis. Indeed, this seems to be an unexplored
area: [7] do not discuss the issue in their original development of the algorithm and Matstoms’
snnls implementation fails in this case.

The details are summarized below.

tsnnls : A sparse nonnegative least squares solver 3

Block principal pivoting algorithm (modified for numerically degenerate problems)

Let F = ∅, G = {1, . . . , n}, x = 0, y = −AT b, andp = 3.
SetN = ∞.
while (xF , yG) is an infeasible solution{

Setn to the number of negative entries inxF andyG.
if n < N (the number of infeasibles has decreased){

SetN = n andp = 3.
Exchange all infeasible variables betweenF andG.

} else{
if p > 0 {

Setp = p− 1.
Exchange all infeasible variables betweenF andG.

} else{
Exchange only the infeasible variable with largest index.

}
}
UpdatexF andyG by Equations 4 and 5.
Set variables inxF < 10−12 andyG < 10−12 to zero.

}

The normal equations solver.
Solving Equation 4 requires an unconstrained least-squares solver. We will often be able to do

this by the method of normal equations. Since some of our software design choices depend on the
details of this standard method, we review them here. To solve a least-squares problemAx = b
using the normal equations, one solves

ATAx = AT b (6)

using a Cholesky factorization of the symmetric matrixATA. This is extremely fast. For anm×n
dense matrixA, the matrix multiplication required to formATA requiresn2m flops, which is more
expensive than the standard Cholesky algorithm which is known to take1

3
n3 + O(n2) flops. For

our sparse matrix problems, we found a comparable relationship between the time required for a
sparse matrix-multiply and theTAUCSsparse Cholesky algorithm.

The numerical performance of this method can be a problem. The condition number ofATA
is the square of the condition numberκ of A. For this reason, we must expect a relative error of
aboutcκ2ε, whereε is the machine epsilon ('10−16 in our double-precision code), andc is not
large. As [3] points out, the Cholesky decomposition may fail entirely whenκ2ε ≥ 1, so we cannot
expect this method to handle matrices withκ > 108. Our tests indicate that this simple analysis
predicts the error in the normal equations solver very well (see Section 4), so we can anticipate the
accuracy of the solver by estimating the condition number ofATA.

3. SOFTWARE ARCHITECTURE

Our primary design goal in the development oftsnnls was to create the most efficient solver
which met the user’s accuracy requirements and did not depend on commercial software or re-
stricted libraries. It is clear that the heart of the algorithm is the solution of the least-squares

tsnnls : A sparse nonnegative least squares solver 4

problem in Equation 4 for the newxF . But the way these solutions are used is quite interesting. In
the intermediate stages of the calculation, we only usexF andyG to search for infeasible variables
to shift betweenF andG. So we need only calculate correctsignsfor all the variables— beyond
this the numerical quality of these solutions is unimportant. But the last solution of Equations 4
and 5 is the result of the algorithm, so this solution must meet the user’s full accuracy needs.
Our implementation takes advantage of this situation by using the method of normal equations for
the intermediate solutions of Equation 4 and then recomputing the final solution using the more
accurateLSQRsolver of [6].

The method of normal equations is already fast. But two of our implementation ideas improve
its speed still further in our solver. As we mentioned in Section 2, computingATA is the most
expensive step in the normal equations solver. A first observation is that we need not formAT

explicitly in order to perform this matrix multiplication, sinceATAij is just the dot product of
the ith andj th columns ofA. This provides some speedup. More importantly, we observe that
each least-squares problem intsnnls is based on a submatrixAF of the same matrixA. Since
AT

FAF is a submatrix ofATA, we can precompute the fullATA and pass submatrices to the normal
equations solver as required. This is a significant speed increase. We make use of theTAUCS
library of [8] for highly optimized computation of the sparse Cholesky factorization needed for
the method of normal equations.

We can estimate the relative errorκ2ε of each normal equations solution by computing the con-
dition numberκ2 of AT

FAF with theLAPACKfunctiondpocon . Since we have already computed
the Cholesky factorization ofATA as part of the solution, this takes very little additional time in
the computation. This is used to determine when a switch to a final step withLSQRis necessary
for error control.

In order to simplify its’ use in other applications, our library incorporates simplified forms of
the TAUCSandLSQRdistributions. These are compiled directly into our library, so there is no
need for the user to obtain and link with these codes separately.

4. SOFTWARE TESTING

We tested our implementation using problems produced by theLSQRtest generator which gen-
erates arbitrarily sized matrices with specified condition number and solution (see [6] for details
on how the generator works). We report on the relative error of our method with the problems
of typeP (80, 70, 4, x), which were typical of our test results. Here80 and70 are the dimensions
of the matrix, each singular value is repeated4 times, andx is a parameter which controls the
condition number of the problem. For these matrices the exact solution was known in advance, so
we could measure the relative error of our solutions as a function of condition number.

The results of this test are shown in Figure 1. The line of datapoints indicated by× shows the
error in tsnnls using only our normal equations solver. As expected, it fits very well to about
1
10

κ2ε whereκ is the condition number of the matrix andε is machine epsilon. The second set
of data points (denoted by.) shows that we usually improve our relative error by2 or 3 orders of
magnitude by recomputing the final solution withLSQR. The third set of data points (denoted byb)
plots the error from theMATLABfunctionlsqnonneg on these problems. For condition numbers
up to106, we see thattsnnls andlsqnonneg have comparable accuracy. But surprisingly, our
method seems to be more stable thanlsqnonneg for very ill-conditioned problems.

We also tested the performance of our software against that oflsqnonneg and that of the
snnls code of [5]. All of our timing tests were performed on a dual 2.0 GHz Power Macintosh G5
running Mac OS X 10.3, compiling withgcc 3.3 and-O3 , and linking with Apple’s optimized

tsnnls : A sparse nonnegative least squares solver 5

log10(κ(A))

lo
g 1

0
(ε

)

-16

-14

-12

-10

-8

-6

-4

-2

0

2

1 2 3 4 5 6 7 8

tsnnls with normal equations

××××
×××××

×××××
×××××××

××××××
×××
××××××××

××××××
×××××

×××××××
×××××

××××××××
×××××××

×××××××
×××××

×
×××
×
××
×××
×
×××××××

××

×
tsnnls with lsqr

...........
.......

.....
......

.
.
.....

....
.....

...
....

.......
...

.....
...

.......
...

....
....

.

...

.

..

.
..

.

...

..

.
.

..
.

lsqnonneg

bbbbbbbbbbbbbbbbbbbbbbbbbbbbb
bbbbbbbbbbbbbb

bbbbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbb

bb
bb
b
b

bbb

b

bbbbbbbbbbb
b
bbbbbbbbbb

FIG. 1: This plot shows the relative error in the solution of a selection of80 × 70 test problems generated
by theLSQRtest generator with inputsP (80, 70, 4, x) and condition numbers varying from101 to 108.
The logarithm (base10) of this errorε is plotted against the logarithm of condition number for three codes:
tsnnls restricted to use only the normal equations solver, the final version oftsnnls , which recomputes
the final solution withLSQR, and theMATLABfunction lsqnonneg .

versions ofLAPACKandBLAS. We ransnnls underMATLAB 7with argument-nojvm .
We were required to make two modifications to thesnnls code to complete our tests. First,

the snnls code uses the column minimum degree permutation (colmmd) before performing
sparse Cholesky decompositions. However, as this ordering is deprecated inMATLAB 7in favor
of absolute minimum degree ordering, we tested against a modifiedsnnls usingcolamd . This
was a strict performance improvement for our test cases. We also made the same workaround to
handle degenerate problems that we discussed fortsnnls in Section 2.

Our performance results are shown in Figure 2. We tested runtimes for randomly generated,
well-conditioned matrices fromMATLAB’s sprandn function. The matrices were of sizen ×
(n − 10). The plot shows runtime results for a set of density1 matrices and a set of density0.01
matrices, intended to represent general dense and sparse matrices. Each data point represents the
average runtime for10 different matrices of the same size and density.

We can see that the runtime of our implementation is approximately proportional to that of
snnls , and that for dense problems it is several times faster. We were surprised to note that the
constant of proportionality decreases for sparse matrices and that our method is almost10 times
faster thansnnls for matrices of density0.01.

The runtime of each code is controlled by three computations: the matrix-multiply used to
form ATA, the Cholesky decomposition of that matrix, and the final recalculation of the solution
(if performed). We expected to be several times faster thansnnls since our caching strategy
for ATA eliminates a matrix-multiply operation for each pivot. The number of pivots, however,
does not seem to vary with the density of our random test matrices and so does not explain our
additional speed increase for sparse problems.

We explored this phenomenon by profiling both our code andsnnls . For our random test

tsnnls : A sparse nonnegative least squares solver 6

0.01

0.03

0.1

0.32

1

3.2

10

31.6

126 158 200 251 316 398 501 631 794

tsnnls aa a

snnls
...

.....
...

...
...

n

tim
e

(s
ec

)

0.1
0.15
0.25
0.39
0.63

1
1.58
2.51
3.98
6.31

10

891 1000 1122 1258 1412

tsnnls a
n

tim
e

(s
ec

)

a a
a a a a a a a a a

snnls .

..
...

....
..

....
...

.....
......

..

FIG. 2: These log-log scaled plots show the runtime oftsnnls andsnnls on density1.0 (left) and0.01
(right) matrices of sizen × (n − 10) on a 2.0 Ghz Apple PowerMac G5. We can see that the runtime of
tsnnls is basically proportional to that ofsnnls , but that the constant of proportionality depends on the
density of the test matrices. This effect is explained below. All runtimes were calculated by repeating the
test problems until the total time measured was several seconds or more.

problems at density0.01, the final unconstrained solution insnnls (computed using the the
MATLAB \ operation) consumes almost50% of the total runtime. On the other hand, intsnnls
the final unconstrained solution (usingLSQR) consumes only5% of runtime. Since the Cholesky
decompositions take comparable time, this would seem to explain the runtime disparity.

We did not show performance data forMATLAB’s built-in lsqnonneg because it was so much
slower than bothtsnnls andsnnls . For sparse matrices, this is in part becauselsqnonneg
is a dense-matrix code. Yet, even on dense matrices, both methods outperformedlsqnonneg by
an overwhelming amount. For instance, for a500 × 490 dense matrix,lsqrnonneg takes over
100 seconds to complete whilesnnls andtsnnls both finish in less than one second. We take
this as a confirmation of the suggestion in MathWorks’ documentation oflsqnonneg that it is
not appropriate for large problems.

5. ACKNOWLEDGEMENTS

This work was funded by the National Science Foundation through the University of Georgia
VIGRE grant DMS-00-8992 and DMS-02-04826 (to Cantarella and Fu). Piatek acknowledges
support through DMS-0311010 to Eric Rawdon. We would like to thank our colleagues for many
helpful discussions.

[1] BJÖRCK, Å. 1996.Numerical methods for least squares problems. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA.

[2] BYRD, R. H., HRIBAR, M. E., AND NOCEDAL, J. 1999. An interior point algorithm for large-scale
nonlinear programming.SIAM J. Optim. 9,4, 877–900 (electronic). Dedicated to John E. Dennis, Jr.,
on his 60th birthday.

[3] FOSTER, L. 1991. Modifications of the normal equations method that are numerically stable. In
Numerical linear algebra, digital signal processing and parallel algorithms (Leuven, 1988). NATO
Adv. Sci. Inst. Ser. F Comput. Systems Sci., vol. 70. Springer, Berlin, 501–512.

[4] L AWSON, C. L. AND HANSON, R. J. 1995. Solving least squares problems. Classics in Applied

tsnnls : A sparse nonnegative least squares solver 7

Mathematics, vol. 15. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
Revised reprint of the 1974 original.

[5] M ATSTOMS, P. 2004. SLS: A MATLAB toolbox for sparse least squares problems.
[6] PAIGE, C. C. AND SAUNDERS, M. A. 1982. Lsqr: An algorithm for sparse linear equations and

sparse least squares.ACM Trans. Math. Softw. 8,1, 43–71.
[7] PORTUGAL, L. F., JÚDICE, J. J.,AND V ICENTE, L. N. 1994. A comparison of block pivoting

and interior-point algorithms for linear least squares problems with nonnegative variables.Math.
Comp. 63,208, 625–643.

[8] TOLEDO, S., ROTKIN , V., AND CHEN, D. 2003. TAUCS: A library of sparse linear solvers. Version
2.2.

[9] TOMLAB OPTIMIZATION , INC. 2004. TOMLAB optimization environment.
[10] WALTZ , R. A. AND NOCEDAL, J. 2003. KNITRO user’s manual. Technical Report OTC 2003/05.

	Introduction
	Algorithms
	Software architecture
	Software Testing
	Acknowledgements
	References

